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Water is a highly polar solvent. As a result, electrostatic interactions of interfacial water molecules
play a dominant role in determining the distribution of ions in electric double layers (EDLs). Near a
surface, an inhomogeneous and anisotropic arrangement of water molecules gives rise to pronounced
variations in the electrostatic and hydration energies of ions. Therefore, a detailed description of the
structural and dielectric properties of water is important to study EDLs. However, most theoretical
models ignore the molecular effects of water and treat water as a background continuum with a
uniform dielectric permittivity. Explicit consideration of water polarization and hydration of ions is
both theoretically and numerically challenging. In this work, we present an empirical potential-based
quasi-continuum theory (EQT) for EDL, which incorporates the polarization and hydration effects of
water explicitly. In EQT, water molecules are modeled as Langevin point dipoles and a point dipole
based coarse-grained model for water is developed systematically. The space dependence of the dielec-
tric permittivity of water is included in the Poisson equation to compute the electrostatic potential.
In addition, to reproduce hydration of ions, ion-water coarse-grained potentials are developed. We
demonstrate the EQT framework for EDL by simulating NaCl aqueous electrolyte confined inside
slit-like capacitor channels at various ion concentrations and surface charge densities. We show that
the ion and water density predictions from EQT agree well with the reference molecular dynamics
simulations. Published by AIP Publishing. [http://dx.doi.org/10.1063/1.4973934]

I. INTRODUCTION

When an electrolyte fluid, which is usually an aqueous
solution of ions, interacts with a charged surface, the sur-
face electric field attracts counter ions to form a layer of
counter ions near the surface, which is called the “electric
double layer” (EDL).1 EDL is fundamental to many techno-
logical applications, such as energy storage devices,2,3 water
desalination,4,5 and biological systems.6 Structural, electro-
chemical, and transport properties, e.g., density, capacitance,
charge transfer, reaction rates, and viscosity, play an important
role in the design and application of the electrolyte systems.
These properties are governed by molecular physics of EDL
at the length scales ranging from a few Angstroms to several
nanometers. Therefore, to design electrochemical systems, it
is critical to understand molecular origins of the properties of
EDL.

Theory and computational tools are essential to interpret
and analyze experimental data, and to obtain molecular level
insights, which may not be accessible via experiments. Molec-
ular simulation tools, such as molecular dynamics (MD) and
Monte Carlo (MC) simulations, allow a detailed atomic-level
study of EDLs.7,8 However, it is computationally expensive
to perform atomistic simulations of electrolyte systems, espe-
cially for low ionic concentrations which require enormous
number of solvent molecules. For example, simulations of
10 mM ion concentration require thousands of water molecules

a)Electronic mail: aluru@illinois.edu

per ion, and due to low ion counts, long simulations are
required to achieve reliable statistics. Therefore, we need
theoretical models which are not only simple and computa-
tionally faster than molecular simulations but also physically
accurate.

The Gouy-Chapman (GC) theory based on the Poisson-
Boltzmann (PB) equation is the most basic and popular theory
to study EDL.9 It models ions as point charges and incorporates
only the electrostatic interactions among them; furthermore, it
treats water implicitly as a background medium with a uniform
dielectric permittivity. However, it ignores many important
molecular aspects of the fluid, such as finite size of the ions,
statistical correlations, the van der Waals (vdW) interactions,
molecular nature of water, and variations in the dielectric
permittivity. Therefore, the accuracy of the Gouy-Chapman
theory is limited.

To address the limitations of the GC theory, various
advanced theories have been developed, such as the modified
PB theory,10 integral equation theory,11 and classical density
functional theory (cDFT).12–17 These theories, in addition to
the electrostatic interactions, mainly account for the finite size
effects of ions and van der Waals interactions among them.
However, they usually ignore molecular details of water and
variations in the dielectric permittivity. For example, in the
most common cDFT approach, which is also known as a prim-
itive model (PM), ions are modeled as charged hard spheres,
water is treated as a background continuum with a uniform
dielectric permittivity, and then the ion density profiles and
EDL properties are obtained by minimizing a free energy
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functional.18 In the PM, if all the ions are assumed to have
the same hard sphere diameter then it is called a restricted PM
(RPM).19

The implicit solvent-based methods ignore important
molecular details of water and, hence, they fail to predict sev-
eral key experimental20 and atomistic simulation results.7,21

Near a surface, water molecules are packed in distinct density
layers, and they exhibit anisotropy in their orientations.22,23

Such inhomogeneous and anisotropic arrangement of the inter-
facial water molecules gives rise to pronounced oscillations
in the polarization, dielectric permittivity, electric field, and
hydration interactions near the surface.24,25 Consequently, the
interfacial water has a dominant effect on the electrostatic and
hydration energies of ions, which in turn affect the spatial
arrangements of ions and electrostatic potential and capac-
itance of EDL. Therefore, the representation of water as a
homogeneous dielectric medium is inaccurate. To accurately
predict the properties of EDL, it is necessary to consider
molecular details of water explicitly.

There are some approaches which try to incorporate
molecular details of water explicitly. The simplest approach
is to model water molecules as hard spheres with uniform
dielectric permittivity. A hard sphere water model has been
used in various cDFT-based studies of EDL, which are also
known as three component model (3CM) or molecular solvent
model (MSM).26,27 Lee et al.14 have further incorporated the
Lennard-Jones (LJ) interactions among ions, water, and wall
particles in the 3CM cDFT. However, the hard sphere model
is a very crude approximation for a water molecule, and it
ignores water-water electrostatic interactions and variations in
the orientation and dielectric permittivity of water. To include
water orientation and polarization effects, dipolar solvent-
based approaches have been proposed, such as the Langevin
dipole model,28–30 dipolar hard sphere model based on mean
spherical approximation (MSA),31 and dimer solvent-based
cDFT.32 Accuracy of these dipolar solvent-based approaches
is limited. For example, dipolar hard sphere MSA is a lin-
ear response theory and is limited to small surface charge
densities.33 Moreover, a detailed comparison of the dipolar
solvent-based theories with higher fidelity MD simulations has
not been performed.

In this work, we present an empirical potential-based
quasi-continuum theory (EQT) for EDL, which can accurately
incorporate the molecular effects of water on the arrangement
of ions in EDL. In earlier work, EQT has been shown to
accurately predict the properties of confined fluids, such as
simple LJ fluids,34–37 CO2,38 and water.39,40 Here, we extend
the EQT framework to include the effects of water dipole orien-
tation, polarization, and dielectric permittivity variation near
a charged surface. To explicitly incorporate water polariza-
tion effects, we systematically develop a point dipole based
coarse-grained (CG) model of water. We also develop coarse-
grained ion-water potentials to accurately capture ion hydra-
tion effects. We show that EQT with point dipole water model
and ion-water coarse-grained potentials can accurately predict
the density profiles of water and ions near a charged surface.

The remainder of the paper is organized as follows. In
Sec. II, we describe the EQT framework for EDL. In Sec. III,
we provide the details of systematic coarse-graining to develop

a point dipole water model and ion-water coarse-grained
potentials. In Sec. IV, we describe the numerical details of EQT
and the reference MD simulations. In Sec. V A, we provide the
analysis of the point dipole approach to predict the electrostatic
potential profile in EDL. In Sec. V B, we demonstrate the EQT
approach by simulating the NaCl aqueous electrolyte confined
inside slit-like capacitor channels at various ion concentrations
and surface charge densities. Finally, we draw conclusions in
Sec. VI.

II. EQT FOR EDL

Consider a mixture of cations (+), anions (�), and water
(w) molecules confined in a charged slit channel. At equilib-
rium, the distribution of the fluid molecules is given by the 1-D
Nernst-Planck (NP) equation

d
dz

(
dρi

dz
+

ρi

kBT
dUi

dz

)
= 0, (1)

with boundary conditions

ρi(0) = 0, (2a)

ρi(L) = 0, (2b)

1
L

∫ L

0
ρi(z) dz = ρi,avg, (2c)

where ρi and Ui are the density and total potential of the
molecule i (= +, �, w), respectively, T is the fluid temperature,
kB is the Boltzmann constant, L is the channel width, ρi,avg

is the average density of the molecule i inside the channel,
and z-axis is normal to the wall. The solution of Eqs. (1) and
(2) is equivalent to the solution of the Boltzmann distribution
equation,

ρi(z) = ρi,ref exp

(
−

Ui(z) − Ui,ref

kBT

)
, (3)

where ρi,ref and Ui,ref are the reference density and potential
of the molecule i, respectively. For the electrolyte system, the
total potential energy can be split into the electrostatics, Ui,elec,
and van der Waals (vdW), Ui,vdw, contributions as

Ui(z) = Ui,elec(z) + Ui,vdw(z). (4)

Procedures to determine Ui,elec and Ui,vdw are described in
Subsections II A and II B.

A. Electrostatic potential

To include the effects of water orientation polarization
and dielectric permittivity variation on the electrostatic poten-
tial, we model water molecules as point-like Langevin dipoles
(LDs) as described by Gongadze et al.28 The electrostatic
potentials for the ions and water molecules are determined
as

U+/−,elec(z) = q+/−φ(z), (5a)

Uw,elec(z) = µ 〈cos θ(z)〉 φ
′

(z), (5b)

where q+ and q− are the charges on the cation and anion,
respectively, φ is the mean electrostatic potential, φ

′

(z) = dφ(z)
dz ,

µ is the dipole moment of the water molecule, θ is the angle
between the water dipole vector and the z-axis, and 〈cos θ(z)〉



044108-3 S. Y. Mashayak and N. R. Aluru J. Chem. Phys. 146, 044108 (2017)

is the average cosine of the dipole orientation. 〈cos θ(z)〉 can
be computed as (see Ref. 28)

〈cos θ(z)〉 = −L
(
βµφ

′

(z)
)

, (6)

where L(x)=
(
coth x − 1

x

)
is the Langevin function and

β = 1
kBT .

From the average dipole orientation profile, we can deter-
mine the orientation polarization, P(z), and the dielectric
permittivity variation, εr(z), as

P(z) = ρw(z)µ 〈cos θ(z)〉 (7)

and

εr(z) = 1 −
P(z)
ε0φ

′(z)
, (8)

where ε0 is the vacuum dielectric constant. In the limit of
φ
′

(z)→ 0, Eq. (8) reduces to the bulk dielectric permittivity,

lim
φ
′ (z)→0

εr(z) = εr,b = 1 +
ρw,bµ

2 β

3ε0
, (9)

where εr,b is the bulk dielectric permittivity and ρw,b is the
bulk density of water. We note that the definition of the per-
mittivity given by Eq. (8) (the Clausius-Mosotty formula) is
valid for the bulk homogeneous and weakly inhomogeneous
systems.30 For strong inhomogeneous systems, a local aver-
age density based phenomenological expression for εr(z) is
proposed which smoothens out the strong oscillations in the
dielectric permittivity profile predicted by Eq. (8).30,41 How-
ever, MD simulation studies have shown that, near a wall,
the dielectric permittivity of water exhibits strong oscillations
similar to the density of water.24,42 Therefore, in this work, we
use Eq. (8) which depends on the local density value of water
and results in the dielectric permittivity oscillations similar
to the oscillations in the density of water (see Sec. V A and
Fig. 6).

To compute φ(z), we use the 1-D Poisson equation with
spatially varying dielectric permittivity as

d
dz

(
εr(z)

dφ
dz

)
= −

q+ρ+(z) + q−ρ−(z)
ε0

, (10)

with boundary conditions

dφ
dz

�����z=0
= −

σwall-L

ε0
, (11a)

dφ
dz

�����z=L
=
σwall-U

ε0
, (11b)

φ (z = L/2) = 0. (11c)

In Eqs. (10) and (11), σwall-L and σwall-U are the surface
charge densities of the lower (z= 0) and upper (z=L) walls,
respectively. To obtain a non-trivial solution of the Poisson
equation with the constant surface charge boundary conditions
(Eqs. (11a) and (11b), we impose a zero potential condition at
the mid-point of the channel via Eq. (11c). Therefore, φ(z) is
the relative electrostatic potential with respect to the mid-point
of the channel. The condition of φ (L/2) = 0 is generally exact
for sufficiently large channels with significant bulk-like region
in the center. However, for smaller channels in which EDLs
of opposite walls may overlap, Eq. (11c) may not be exact. In
such cases, to determine a unique solution of Eq. (10), it is

simpler to use constant surface potential boundary conditions
instead of constant surface charge boundary conditions.

B. vdW potential

We compute the total vdW potential as a sum of the wall-
fluid, Uwf

i,vdw and fluid-fluid, U ff
i,vdw, vdW potentials as

Ui,vdw(z) = Uwf
i,vdw(z) + U ff

i,vdw(z). (12)

In the continuum approximation, we represent the wall as
a continuous medium with a uniform particle density, ρwall.
Then, the wall-fluid vdW potential is determined as

Uwf
i,vdw(r) = ρwall

∫
uwf

i (r)dr′, (13)

where uwf
i (r) is the effective vdW pair potential between the

wall atoms and molecule i, r and r′ are the position vectors,
and r = |r − r′ |. A procedure to compute Uwf

i,vdw(r) for a slit-
channel system is described in Ref. 39. Note that in Eq. (13),
r = xi + yj + zk is a general position vector. In the case of a 1-D
slit channel, the system is periodic in x and y dimensions and
therefore, we consider only the z-variations of the properties,
i.e., Uwf

i,vdw(r) = Uwf
i,vdw(x, y, z) = Uwf

i,vdw(z) ∀ x, y.
The fluid-fluid vdW potentials are more challenging to

compute than the wall-fluid potentials. They give rise to the
finite size, i.e., excluded volume effects, dispersion attrac-
tion, and particle-particle correlations in the fluid. The exact
theoretical framework, which accounts for all the fluid-fluid
interaction effects, is unknown. In this work, we split the
fluid-fluid vdW potential into purely repulsive and dispersion
components as

U ff
i,vdw(r) = U ff

i,hs(r) +
3∑

j=1

∫ Rff
ij,cut

Rff
ij,min

ρj(r′)uff
ij (r)dr′, (14)

where uff
ij (r) is the effective vdW pair potential between fluid

molecules i and j, and Rff
ij,min and Rff

ij,cut are the inner and
outer cut-offs for the dispersion part of the pair potential,
respectively. In Eq. (14), U ff

i,hs(r) is the purely repulsive com-
ponent of the fluid-fluid interactions, which mainly accounts
for the excluded volume effects. We use the hard sphere fluid
approximation based on the White-Bear version of funda-
mental measure theory (FMT) mark II43 to determine U ff

i,hs(r)
as

U ff
i,hs(r) = kBT

∑
α

∫
dr′
∂Φ ({nα})
∂nα

δnα (r′)
δρi (r)

, (15)

whereΦ is the reduced free energy density and {nα} are the set
of weighted densities. The details about Φ and {nα} are given
in the Appendix. The second term in Eq. (14) accounts for
the fluid-fluid vdW attractive interactions using a mean field
approximation.

To compute Uwf
i,vdw and U ff

i,vdw, we need to specify uwf
i (r)

and uff
ij (r). In Eqs. (13) and (14), uwf

i (r) and uff
ij (r) are assumed

to be spherically symmetric isotropic pair potentials. Classi-
cal atomistic force fields, which are used in MD simulations,
provide vdW pair potentials for wall-fluid and fluid-fluid inter-
actions. In the atomistic force fields, vdW interactions of ions
are commonly modeled with the pair additive LJ potentials. For
monoatomic ions, the ion-ion and ion-wall LJ potentials are
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spherically symmetric and hence, they are straightforward to
use in Eqs. (13) and (14). However, in MD, the water molecule
is generally modeled with multiple sites to represent hydrogen
and oxygen atoms and partial charge distribution, e.g., three
sites SPC/E model,44 four sites TIP4P model,45 and five sites
TIP5P model.46 Due to multiple sites per water molecule, the
water-water and ion-water interactions in an atomistic force
field are anisotropic, i.e., they depend not only on the sep-
aration distance between molecules but also on the relative
orientation. Therefore, it is more complex to use fully atom-
istic force field of water in a continuum framework. Hence,
we need a simple yet accurate potential model for water which
can incorporate the effects of water polarization and ion-water
interactions. As explained in Sec. II A, in EQT, we use a point
dipole model for water to include polarization effects of water.
However, as per our knowledge, there is no point dipole-based
force field for water which can accurately predict the structural
and dielectric properties of water. Therefore, we first develop a
point dipole-based water force field and single site spherically
symmetric ion-water coarse-grained potentials as described in
Sec. III.

III. COARSE-GRAINED (CG) POTENTIALS

We follow a systematic coarse-graining approach to
develop a point dipole based CG model of water and obtain
ion-water CG interactions. Systematic coarse-graining is a
bottom-up approach to devise CG models by systematically
linking a low resolution CG system to a reference high resolu-
tion all atom (AA) system.47–49 In this work, we first obtain the
CG potentials in the particle based CG MD framework and use
the same CG interactions in EQT to compute the water-water
and ion-water vdW potentials.

A. Point dipole CG water model

To mimic point dipoles in CG MD, we use an extended
dipole topology as shown in Fig. 1, in which two oppo-
site charges, ±q, are symmetrically placed at distance d/2
from the center of the molecule. Ballenegger and Hansen50

have shown that for d/σmol ≤ 0.25, the extended dipole and
point dipole models are similar, where σmol is the effective
diameter of the molecule. For the dipole water model, we
fix d = 0.058 nm, which is same as the length of the SPC/E
water dipole, and it also satisfies d/σmol = 0.183 ≤ 0.25 (with
σmol = σSPCE = 0.317 nm). Therefore, the dipole water model
has a permanent dipole moment of µ = qd. Total interaction
energy between two extended dipoles is a sum of the four
electrostatic interactions between the point charges and the

FIG. 1. Topology of the extended dipole water molecule.

vdW interactions,

Uij,dd = udd,cg

(
rij

)
+

2∑
l=1

2∑
m=1

qilqjm

4πε0
���ril − rjm

���
, (16)

where Uij,dd is the total interaction energy between two dipoles
i and j, udd,cg (rij) is the coarse-grained vdW pair potential, rij is
the center-to-center distance between i and j dipoles, qil and qjm

are the point charges of dipole molecules i and j, respectively,
qi1 = qj1 = −q and qi2 = qj2 = +q, and ril and rjm are
the positions of qil and qjm, respectively. Therefore, the vdW
interaction between two dipoles depends only on the distance
between the centers of the dipoles, and hence, it is spherically
symmetric.

For an accurate prediction of EDL properties, we need
a dipole model which can accurately capture the structural
and dielectric properties of water. We use systematic coarse-
graining to determine q and udd,cg(r) for the point dipole model
such that it reproduces the radial distribution function (RDF)
and dielectric permittivity of the bulk water. We use SPC/E as
a reference AA model and the RDF of bulk water at 298 K and
1.0 g/cm3 thermodynamic state as the target RDF and 78.5 as
the target permittivity.

There are various structure-based systematic coarse-
graining techniques, such as iterative Boltzmann inversion
(IBI),51 inverse Monte Carlo (IMC),52 and relative entropy
minimization,53,54 which can optimize udd,cg(r) to reproduce a
target RDF. We use the relative entropy minimization method
to optimize udd,cg(r). We model udd,cg(r) with a cubic B-spline
functional form (see Ref. 55 for the details of the B-spline
potential). In Ref. 54, it is shown that when CG pair potentials
are modeled using finely tabulated functional forms, such as
B-splines, the relative entropy minimization based CG poten-
tials reproduce RDFs. Relative entropy based CG water models
have been shown to accurately predict the RDF of the bulk
water55,56 and the density profiles of the confined water.40

However, the relative entropy minimization does not guaran-
tee reproducibility of the dielectric permittivity. We note that
the dielectric permittivity mainly depends on the magnitude
of the dipole moment, µ= qd. Since, as mentioned above, we
fix d = 0.058 nm, q is the only free parameter to adjust µ.
We use a trial and error approach to optimize q such that the
target permittivity is reproduced. In this approach, we first set
a test value for q = qt and perform the relative entropy mini-
mization to obtain the vdW pair potential, udd,cg(r) = ut

dd,cg(r),

corresponding to qt. Then we perform a CG MD simulation
with qt and ut

dd,cg(r) and compute the RDF and dielectric per-
mittivity. We perform different sets of relative entropy-based
coarse-graining calculations with different point charge val-
ues. We note that for each point charge value the relative
entropy method is able to determine the pair potential which
reproduces the target RDF.

Fig. 2 shows different pair potentials for different point
charge values and comparison of RDFs. We observe that all
of them are able to reproduce the target RDF. Dielectric per-
mittivity values obtained for the different combinations of the
point charge and pair potential are given in Table I. We choose
the CG potential obtained with q = 0.73 e, which reproduces
both the target RDF and dielectric permittivity.
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FIG. 2. (a) Dipole-dipole CG potentials obtained by the relative entropy min-
imization for different point charge values. (b) Comparison of COM RDFs
from SPC/E based AA MD and point dipole based CG MD.

B. Ion-water CG potentials

An ion-water interaction has two parts: (i) the long-range
ion-water electrostatic interaction and (ii) the short-range ion-
water vdW interaction. The ion-water electrostatic interac-
tion causes screening of the ion-ion electrostatic interactions.
The effects of the ion-water electrostatic interactions can
be accounted via the dielectric permittivity of water, which
scales down (i.e., screens) the ion-ion electrostatic interac-
tions. Therefore, here, we only determine the ion-water short-
range vdW interactions by the systematic coarse-graining
approach.

For systematic coarse-graining of the ion-water vdW
interactions, we use a single Na+–Cl− pair dissolved in a bulk
water system. In the reference atomistic simulations, water is
modeled with SPC/E force field; ion-ion and ion-water interac-
tions are modeled with the force field of Joung and Cheatham57

(see Sec. IV B). To determine the ion-water CG interactions,
we represent water as a single bead and for water-water inter-
actions, we use the relative entropy based CG interactions
obtained in Ref. 55. The ion-ion vdW interactions are the same

TABLE I. Dielectric permittivities of point dipole water for different point
charge values.

q (e) µ (D) εr

0.8476 2.35 292.78
0.7300 2.034 77.01
0.6282 1.75 49.75

FIG. 3. (a) Ion-water CG potentials obtained by relative entropy minimiza-
tion. (b) Comparison of ion-water RDFs from AA MD and CG MD.

as the LJ interactions in the atomistic force-field. The charges
on the ions are also kept the same as in the atomistic force
field. The ion-ion electrostatics are computed by the particle
mesh Ewald (PME)58 method with the relative permittivity of
78.5. The ion-water CG potentials are modeled with B-splines
and optimized by the relative entropy minimization.

Fig. 3 shows the Na+-water and Cl−-water CG potentials
and the comparison of the ion-water RDFs from the AA MD
and CG MD simulations. We observe that the ion-water CG
potentials accurately predict the ion-water RDFs. Though the
ion-water CG potentials are obtained from the single ion pair
system, i.e., dilute ion concentration, we find that the ion-water
CG potentials are transferable up to 1M ion concentration, i.e.,
they can reproduce ion-water RDFs of the bulk NaCl system
up to 1M concentration.

In this work, the relative entropy-based coarse-graining
for the point dipole CG water and ion-water CG interac-
tions is performed using the versatile object-oriented toolkit
for coarse-graining applications (VOTCA).55,59 We follow the
procedure as described in Ref. 55 for the relative entropy min-
imization. The reference AA MD and CG MD simulations
are performed in GROMACS.60 The long-range electrostatic
interactions are computed with the PME. A cutoff of 0.9 nm is
used for the vdW pair potential and the short-range component
of the electrostatic interactions.

IV. SIMULATION DETAILS

To demonstrate EQT for EDL, we simulate the NaCl aque-
ous electrolyte confined inside slit-like capacitor channels. The
electrolyte fluid is confined between two parallel, uniformly,
and oppositely charged graphene walls separated by 3.804 nm
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TABLE II. Summary of the systems simulated.

Lower/upper Molecules in MD simulations
System no. wall charge density (C/m2) NaCl concentration (M) water/Na+/Cl−

I �0.12/0.12 0.25 1624/14/14
II �0.15/0.15 0.50 1637/22/22
III �0.15/0.15 0.75 1633/28/28
IV �0.18/0.18 1.00 1640/37/37

(=12σOW, where σow(=0.317 nm) is the length scale of the LJ
interactions between water oxygen atoms). 12σow is a large
enough width to avoid overlap of two opposite EDLs and
allow sufficiently wide bulk-like region at the center of the
channel. The confined electrolyte is assumed to be in thermo-
dynamic equilibrium with a reference bulk electrolyte system.
We consider a range of 0.25M–1M bulk ion concentrations
in water at 1.0 g/cm3 density and 298 K temperature, and
surface charge densities of 0.12–0.18 C/m2. Table II summa-
rizes four different systems considered in this work. To check
the accuracy of EQT, we compare the EQT results with MD
simulations.

A. EQT simulations

In EQT, we solve Eqs. (3)–(14) self-consistently to deter-
mine density and potential profiles of ions and water. The
reference densities and potentials required in Eq. (3) are
determined from the reference bulk system. The reference
bulk potentials, Ui,ref, are computed by substituting the bulk
densities in Eq. (14). To compute the attractive part of the
vdW potential from Eq. (14), we use the CG pair potentials,
i.e.,

uff
ij (r) = uff

ij,cg(r), (17)

where uff
ij,cg is the CG interaction between the molecules i and

j. As explained in Sec. II B, for the ion-ion pairs, uff
ij,cg are

the same LJ potentials as in the reference MD simulations
(see Sec. IV B), and for the water-water and ion-water pairs,
we use the CG pair potentials obtained in Sec. III. For all
the pair potentials, we set Rff

ij,cut = 0.9 nm. There are differ-

ent approaches to set Rff
ij,min for the LJ type pair potentials.61

Here, we set Rff
ij,min =σ

ff
ij for the ion-ion LJ pair potentials,

where σff
ij is the usual LJ parameter. For the water-water

and ion-water CG potentials, we set Rff
ij,min to be the loca-

tion of the first minima of the corresponding CG pair poten-
tial. Therefore, Rff

ww,min = 0.28 nm, Rff
+w,min = 0.244 nm, and

Rff
−w,min = 0.314 nm. To compute the wall-fluid potential ener-

gies from Eq. (13), we use ρwall = 38.18 atoms/nm3 for
the graphene walls. For the wall-water potential energy, we
use the same LJ pair potential as that of C–O pair in the
reference MD simulations. For the wall-ion potentials, as
explained in Sec. V B, we modify the reference MD C-ion
LJ pair potentials to account for the errors in the Langevin
dipole model near the walls. To determine the mean elec-
trostatic potential, φ(z), we solve Eqs. (10) and (11) with
q+ = +1.0 e and q− = −1.0 e, and µ= 2.88 D. For the capacitor
channel, the walls are equally and oppositely charged such that

σwall-L = −σwall and σwall-U = σwall, where σwall is the given
surface charge density. To determine the hard-sphere energy
component from FMT (Eq. (15)), we use dhs,w = 0.28 nm,
dhs,+ = 0.14 nm, and dhs,− = 0.23 nm. The values for µ and
dhs,i are set such that the density profiles from EQT compare
well with the reference MD simulations. The summary of the
interaction parameters used in EQT simulations is given in
Table III.

Once all the parameters are set, we use the Picard iteration
technique to self-consistently solve Eqs. (3)–(14). We note that
the convergence of the Picard iterations depends on the initial
guesses for the fluid density profiles. We use uniform bulk fluid
densities as an initial guess. However, for high surface charge
densities, the Picard iterations may diverge depending on the
initial guess. Similar convergence issues for high ion concen-
trations and surface charge densities have been observed by
others.30,32 To solve the convergence issue, we implement a
surface charge stepping procedure as following. We start with
a zero surface charge boundary condition and uniform bulk
densities as an initial guess and obtain the converged fluid den-
sities, ρ0

i (z), corresponding to the zero surface charge. Next,
we increment the surface charge by a discrete value∆σwall and
use ρ0

i (z) as an initial guess to again obtain the converged den-

sities, ρ∆σwall
i (z). We repeat this procedure of increasing the

surface charge by ∆σwall and using ρ(n−1)∆σwall
i (z) as an ini-

tial guess to obtain the density profiles for the surface charge
of n∆σwall until we reach the target surface charge value,
σwall.

TABLE III. Interaction parameters in EQT simulations.

q (e) µ (D) dhs (nm)

Water 0.0 2.88 0.28
Na+ +1.0 0.0 0.14
Cl− �1.0 0.0 0.23

uff
cg(r) Rff

min (nm)

Water–Water udd,cg(r)a 0.28
Na+–Na+ uNa–Na,md(r)b 0.215 95
Cl−–Cl− uCl–Cl,md(r)b 0.483 04
Na+–Cl− uNa–Cl,md(r)b 0.349 495
Na+–Water uNa–Water,cg(r)c 0.244
Cl−–Water uCl–Water,cg(r)c 0.314
C–Water uC–O,md(r)b 0.0
C–Na+ LJ (σ = 0.4596 nm, ε = 0.2328 kJ/mol) 0.0
C–Cl− LJ (σ = 0.3814 nm, ε = 0.1781 kJ/mol) 0.0

aSame as the dipole-dipole CG potential obtained in Sec. III A.
bSame as the LJ potentials in MD (Table IV).
cSame as the ion-water CG potentials obtained in Sec. III B.
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We note that the EQT simulations are orders of magni-
tude faster than the MD simulations. For example, on a single
Intel Core i7-3520M 4M Cache 3.60 GHz processor, an EQT
simulation of system III requires around 4 min, whereas a
10 ns long MD simulation of the same system requires around
60 h.

B. MD simulations

The reference MD simulations are performed in the NVT
(canonical) ensemble by GROMACS. Two graphene walls are
placed along the xy plane, and the lateral dimensions of the
walls are 3.834 × 3.689 27 nm2. The wall atoms are kept fixed.
A uniform partial charge is assigned to the wall atoms. The
value of the partial charge on the wall atoms is determined
from a given surface charge density. For example, −0.02 e
and +0.02 e charges are assigned to the lower (z = 0) and
upper (z = L) wall atoms, respectively, to achieve the surface
charge density of 0.12 C/m2. Periodic boundary conditions
are used in the x, y, and z directions. Water is modeled using
the SPC/E force field, and ions are modeled using the force
field of Joung and Cheatham.57 The LJ interaction parame-
ters of various fluid particles are given in Table IV. The LJ
parameters between two dissimilar particles are determined by
the Lorentz-Berthlot (LB) combination rule. We note that Wu
and Aluru62 have developed a more accurate graphitic carbon-
water force field. This carbon-water force field depends on the
water orientation and hence, it is anisotropic. As explained
in Sec. II B, for simplicity, we use isotropic vdW pair poten-
tials in EQT, and therefore, in MD also, we model C-water
interactions by the LJ type isotropic pair potential parameters
given in Table IV. A spherical cutoff of 0.9 nm is used for the
LJ interactions, and electrostatic interactions are computed by
PME.58 The simulation box is padded with a vacuum layer
of 50σow in the z dimension along with a correction for the
slab geometry to exclude the interactions between the periodic
images in z. Temperature is maintained using the Nosé-Hoover
thermostat63 with 0.5 ps time constant. Equations of motion are
integrated with the leap-frog algorithm with a time step of 1 fs.
For a given bulk ion concentration and surface charge density,
the number of ions and water molecules is determined by a
trial and error approach such that the bulk fluid densities are
achieved in the center of the channel. The number of molecules
determined for different systems are given in Table II. For
each ion concentration and surface charge density, equilib-
rium properties are obtained by averaging the values from 5
different MD simulations of 10 ns each with different initial
conditions.

TABLE IV. LJ interaction parameters in MD simulations.

σ (nm)a ε (kJ/mol)a

H 0.0 0.0
O 0.317 0.650 3
Na+ 0.215 95 1.475 45
Cl− 0.483 04 0.053 49
C 0.339 0.233 4

aParameters for the two dissimilar particles are determined by the Lorentz-Berthlot (LB)
combination rule.

V. RESULTS AND DISCUSSION
A. Analysis of LD approach

First, we analyze the ability of the LD model to predict
electrostatic potential variations in EDL. For this analysis,
we provide the ion and water center of mass (COM) den-
sity profiles from the MD simulations of system II as an
input to the LD Eqs. (6)–(11) and solve the equations self-
consistently. To study the dependence of LD results on the
dipole moment, we vary µ from 1.2 to 4.8 D. For compar-
ison, we also compute φ(z) with a uniform dielectric per-
mittivity of ε r = 78.5. We compare φ(z) from the LD and
uniform permittivity approaches with MD. To compute φ(z)
from MD, we solve Eq. (10) with ε r = 1 and the charge den-
sities of ions and partial charges of water molecules, i.e.,∑

i qi ρi(z) = qNa+ ρNa+ (z) + qCl− ρCl− (z) + qHρH(z) + qOρO(z).
Fig. 4 shows the total charge density and densities of Na+, Cl−,
O, H, and water COM from MD.

Fig. 5 shows the comparison of the electrostatic poten-
tials from MD, LD, and uniform permittivity approaches. We
observe that φ(z) from MD shows pronounced oscillations near
the channel walls and it varies linearly in the central region of
the channel. In the lower half of the channel, i.e., closer to
the negatively charged wall, φ(z) is mostly negative except at
0.2 nm away from the lower wall, where there is a positive
peak in φ(z). The positive peak in the electrostatic potential
near the negatively charged wall can be attributed to the net
positive charge density due to the accumulation of positively
charged hydrogen atoms at 0.2 nm away from the lower wall

FIG. 4. Charge and species density profiles from the MD simulations of sys-
tem II: (a) Total charge density, i.e., ions plus water partial charges. (b) O, H,
and water COM densities on the left y-axis and Na+ and Cl− ion densities on
the right y-axis.
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FIG. 5. Electrostatic potentials for system II from MD, LD with differ-
ent dipole moment values, and uniform permittivity approximation with
εr = 78.5. (a) Full range plots for comparison with MD. (b) Zoomed in
plot for comparing LD and uniform permittivity approaches.

(see Fig. 4). Similarly, in the upper half of the channel, φ(z)
is mostly positive except at 0.3 nm away from the upper wall,
where there is a negative valley due to the net negative charge
density from the accumulation of negatively charged Cl− and
oxygen atoms.

The electrostatic potential profiles from the LD approach
show weaker oscillations compared to MD. Moreover, the
strength of the electrostatic potential from the LD model
decreases as the dipole moment value is increased. This behav-
ior can be understood by examining the dielectric permittivity
profiles from the LD model for different µ values as shown
in Fig. 6. We observe that, for all µ values, the variations
in εr are similar to the variations in the water COM density

FIG. 6. Dielectric permittivity profiles of system II from LD with different
dipole moment values.

profile. However, a larger dipole moment value results in a
higher permittivity profile which results in a stronger screen-
ing of the surface electric field and hence, a smaller potential
profile. The errors in the LD model are due to the simplifica-
tions adopted in Eqs. (6)–(10). The LD model is a mean-field
approach, and hence, it ignores dipole-dipole direct interac-
tions and dipole-dipole correlations.28 In addition, the LD
model neglects higher electric moments of the water molecule,
such as a quadrupole moment, which also contribute to the
dielectric permittivity variation of confined water.24,25

Though the LD model fails to capture the oscillations in
φ(z), the surface potentials at the walls (i.e., φ(0) and φ(L))
predicted by LD are comparable to MD. We observe that,
for all µ values considered, the error in the surface poten-
tial at the negatively charged wall is higher compared to the
error at the positively charged wall. This is mainly due to the
failure of the LD framework to capture the positive peak in
the electrostatic potential near the negatively charged wall.
Despite these errors, the LD framework performs better than
the uniform dielectric approach. From Fig. 5, we observe
that φ(z) from the uniform dielectric permittivity approach
does not exhibit any oscillations and it increases monoton-
ically from the lower to the upper wall. Moreover, there is
an order of magnitude error in the surface potentials pre-
dicted by the uniform permittivity approach. Therefore, the
LD approach is an improvement over the uniform permittivity
approach.

B. EQT results

We use the EQT framework to obtain ion and water den-
sity profiles for the four systems summarized in Table II.
The numerical details of the EQT simulations are given in
Sec. IV A. As explained in Sec. IV A, for the ion-ion inter-
actions, we use the same LJ potentials that are used in the
reference MD simulations. For the water-water and ion-water
pair interactions, we use the systematically developed CG
potentials discussed in Sec. III. For the wall-water interac-
tions, we use the same C–O LJ potential used in the reference
MD simulations. For the wall-ion interactions, we use LJ pair
potentials similar to those in the reference MD. However, we
modify the wall-ion LJ interaction parameters to account for
the errors in the electrostatic potential near the walls due to
the approximations in the LD model as described in Sec. V
A. To optimize the wall-ion LJ potentials, we use a poten-
tial of mean force (PMF) matching based technique.40 For
the PMF-matching, we use system IV as a reference system.
The optimized wall-ion LJ parameters are as follows: σwf

+

= 0.4596 nm, εwf
+ = 0.2328 kJ/mol, σwf

− = 0.3814 nm, and εwf
−

= 0.1781 kJ/mol. For the water point dipole, we use µ = 2.88 D
because it predicts the surface electrostatic potentials compa-
rable to MD (see Sec. V A). The summary of the interaction
parameters used in EQT simulations is given in Table III.

Figs. 7 and 8 show the comparison of the density profiles
from EQT and MD for water and ions, respectively. For com-
parison purposes, we also include the density profiles from
3CM cDFT simulations. In the 3CM cDFT simulations, water
molecules are modeled as neutral LJ type particles, and ions
are modeled as charged particles with LJ interactions. The LJ
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FIG. 7. Comparison of water density
profiles from EQT, 3CM cDFT, and MD
for four different systems: (a) system
I, (b) system II, (c) system III, and (d)
system IV.

interaction parameters are the same as in MD, and the elec-
trostatic interactions are computed by the Poisson’s equation
with a uniform dielectric permittivity of 78.5. The hard sphere
component of the free energy is modeled with FMT with the
same hard sphere diameters as in EQT.

Fig. 7 shows that the water density profiles from EQT
compare well with the reference MD simulations. The 3CM
cDFT predicts higher oscillations in the water density pro-
files compared to MD. The errors in the 3CM cDFT water
density profiles are due to the simple LJ based model of water,
which ignores the water-water electrostatic interactions. Fig. 8

shows that the ion density profiles from EQT compare well
with the reference MD simulations. The distribution of Na+

and Cl− ions near the charged surfaces, such as the location
of the first peak and layering, is different due to the differ-
ences in their sizes and hydration properties.21,64,65 Such ion
specific information is built into the EQT framework via differ-
ent hard sphere diameters and ion-water CG potentials, which
accounts for the ion hydration. The ion density profiles from
3CM cDFT are qualitatively and quantitatively different than
the MD simulations. The errors in the 3CM cDFT mainly arise
from the inability of the simple LJ based ion-water potentials

FIG. 8. Comparison of Na+ and Cl− ion
density profiles from EQT, 3CM cDFT,
and MD for four different systems: (a)
system I, (b) system II, (c) system III,
and (d) system IV.
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and uniform dielectric permittivity assumption to capture
ion hydration and water polarization effects.

There are, however, some quantitative discrepancies
between the EQT and MD density profiles. These discrep-
ancies are due to the simplifications made in this work. In
addition to the mean-field approximations in the LD approach,
as described in Sec. V A, we ignore fluid-fluid correlations
while determining the vdW potentials from Eq. (14). Also,
for the water-water and ion-water interactions, we use the CG
potentials determined from the bulk systems. Since, the inter-
facial arrangement of the water molecules and ions is different
from the bulk, the bulk-based CG potentials are not exact near
the surface. There are approaches in EQT to address these lim-
itations. The fluid-fluid correlation effects can be accounted
via the correlation correction potential approach as described
in Refs. 36 and 37. To account for the errors arising from
the bulk-based CG potentials near the interface, wall-fluid
interactions can be modified as suggested in Refs. 39 and 40.
We note that, in this work, we already optimize the wall-ion
LJ interactions to account for the errors near the interface.
The accuracy of these wall-ion CG potentials can further be
improved by using a more flexible B-spline functional form.
Similarly, the errors in the water density profiles can be cor-
rected by using a more complex functional form, such as LJ
plus 2 Gaussians or B-splines, to model the wall-water vdW
potential.39,40

VI. CONCLUSIONS

In this work, we developed a realistic explicit water based
theoretical framework for studying EDLs. This framework
is based on the EQT and point dipole based coarse-grained
water model. In EQT, water polarization and dielectric per-
mittivity variations are modeled using the Langevin dipole
approach. Finite size effects of water and ions are approxi-
mated by the White-Bear mark II (WBII) version of FMT. To
accurately capture hydration interactions, we systematically
developed water-water and ion-water coarse-grained poten-
tials by relative entropy minimization. We demonstrated EQT
by simulating the NaCl aqueous electrolyte confined inside
slit-like capacitor channels for various ion concentrations and
surface charge densities. EQT predictions of the water and ion
density profiles agree well with the reference MD simulations.
Further improvements can be made to the EQT framework
presented in this work by incorporating dipole-dipole direct
interactions and dipole-dipole and fluid-fluid correlations.
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APPENDIX: FUNDAMENTAL MEASURE THEORY

Rosenfeld’s fundamental measure theory (FMT) provides
a functional to determine the excess (over the ideal gas) free

energy of hard-sphere mixtures, Fhs
[
{ρi}

]
, as43,66

βFhs
[
{ρi}

]
=

∫
dr′Φ

({
nα

(
r′
)})

, (A1)

where β = 1
kBT ,Φ is the reduced free energy density, and {nα}

are the set of weighted densities. The weighted densities for
the ν-component mixture are defined as

nα (r) =
ν∑
i

∫
dr′ρi

(
r′
)
ωi
α

(
r − r′

)
, (A2)

where ωi
α are the weight functions given by

ωi
3 (r) = Θ

(
Ri,hs − r

)
,

ωi
2 (r) = δ

(
Ri,hs − r

)
,

ωi
2 (r) =

r
r
δ
(
Ri,hs − r

)
,

ωi
1 (r) =

ωi
2 (r)

4πRi,hs
,

ωi
0 (r) =

ωi
2 (r)

4πR2
i,hs

,

ωi
1 (r) =

ωi
2 (r)

4πRi,hs
.

(A3)

In Eq. (A3), Ri,hs =
di,hs

2 is the hard-sphere radius of the
molecule i, di,hs is the hard-sphere diameter of the molecule
i, Θ(r) is the Heaviside step function, δ(r) is the Dirac-delta
distribution, and r = |r|. The integrations over ωi

α (Eq. (A2))
give the fundamental measures of a fluid i, such as the volume
(α = 3), the surface area (α = 2), the mean radius of curvature
(α = 1), and the Euler characteristics (α = 0).

Various functions for the reduced free energy density,
Φ ({nα (r′)}), are derived from the different thermodynamic
conditions.43 For example, the original Rosenfeld functional
based on the scaled-particle theory equation, the White-Bear
(WB) functional based on the Mansoori-Carnahan-Starling-
Leland (MCSL) equation of state, and the White-Bear mark
II (WBII) functional, which is similar to the WB functional
but is constructed to reproduce the Carnahan-Starling-Boublı́k
equation of state for a one-component bulk fluid. In this work,
we use the WBII version of FMT. In WBII, the reduced free
energy density is given by

Φ = −n0 ln (1 − n3) + (n1n2 − n1 · n2)
1 + 1

3φ2 (n3)

1 − n3

+
(
n3

2 − 3n2n2 · n2

) 1 − 1
3φ3 (n3)

24π(1 − n3)2
, (A4)

where

φ2 (n3) =
1
n3

(
2n3 − n2

3 + 2 (1 − n3) ln (1 − n3)
)

(A5)

and

φ3 (n3) =
1

n2
3

(
2n3 − 3n2

3 + 2n3
3 + 2(1 − n3)2 ln (1 − n3)

)
.

(A6)
From Eqs. (A1) and (A2), we determine U ff

i,hs, required in
Eq. (14), as
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U ff
i,hs(r) =

δFhs
[
{ρi}

]
δρi (r)

= kBT
∑
α

∫
dr′
∂Φ ({nα})
∂nα

δnα (r′)
δρi (r)

.

(A7)

For a 1-D slit channel, the weighted densities expression,
Eq. (A2), simplifies to43

nα (r) = nα (z) =
∑

i

∫
dz′ρi

(
z′
)
ωi
α

(
z − z′

)
, (A8)

where the one dimensional weight functions are

ωi
3 (z) = π

(
R2

i − z2
)
Θ (Ri − |z |) ,

ωi
2 (z) = 2πRiΘ (Ri − |z |) ,

ωi
2 (z) = 2πzezΘ (Ri − |z |) ,

ωi
1 (z) =

ωi
2 (z)

4πRi
,

ωi
0 (z) =

ωi
2 (z)

4πR2
i

,

ωi
1 (z) =

ωi
2 (z)

4πRi
,

(A9)

where ez is the unit vector in the z-direction. Similarly, the
expression for U ff

i,hs, Eq. (A7), simplifies to

U ff
i,hs(z) =

δFhs
[
{ρi}

]
δρi (z)

= kBT
∑
α

∫
dz′
∂Φ ({nα})
∂nα

δnα (z′)
δρi (z)

.

(A10)
To evaluate the integrations in Eqs. (A8) and (A10), we use
the numerical scheme given by Knepley et al.67
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