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We present a continuum-based approach to predict the structure and thermodynamic properties
of confined fluids at multiple length-scales, ranging from a few angstroms to macro-meters. The
continuum approach is based on the empirical potential-based quasi-continuum theory (EQT) and
classical density functional theory (cDFT). EQT is a simple and fast approach to predict inhomoge-
neous density and potential profiles of confined fluids. We use EQT potentials to construct a grand
potential functional for cDFT. The EQT-cDFT-based grand potential can be used to predict various
thermodynamic properties of confined fluids. In this work, we demonstrate the EQT-cDFT approach
by simulating Lennard-Jones fluids, namely, methane and argon, confined inside slit-like channels
of graphene. We show that the EQT-cDFT can accurately predict the structure and thermodynamic
properties, such as density profiles, adsorption, local pressure tensor, surface tension, and solvation
force, of confined fluids as compared to the molecular dynamics simulation results. C 2015 AIP
Publishing LLC. [http://dx.doi.org/10.1063/1.4922956]

I. INTRODUCTION

Fluids confined in a narrow pore or channel, especially at
length scales ranging from a few angstroms to micrometers,
exhibit interesting properties1 and have many practical appli-
cations, such as nanofiltration,2–6 drug delivery,7,8 enhanced oil
recovery,9,10 heat management,11,12 and material synthesis.13

In confinement, due to the spatial constraints and competition
between the surface-fluid and fluid-fluid atomic interactions,
the fluid properties can be significantly different from the
bulk fluid. For example, the pressure experienced by a fluid
confined in a nanopore can be orders of magnitude higher
than the pressure in the bulk fluid.14 Such unusual behavior
of confined fluids can have practical applications, e.g., a car-
bon nanotube (CNT) can be used as a super-compressor for
the synthesis of valuable high-pressure materials, such as KI
nanocrystals.13 Therefore, study of confined fluids is important
to get atomic-level insights into their unusual properties and to
enable the design of novel nanofluidic applications.

Study of confined fluids at atomic-level by experimental
methods can be difficult and expensive, therefore, we need
theoretical and computational methods. Such methods also
help explain experimental results and establish the relations
between various properties of the fluid. Molecular simulation
techniques, such as molecular dynamics (MD) and Monte
Carlo (MC) simulations, can be used to study the microscopic
properties of confined fluids.15,16 However, these techniques
are computationally expensive, and accessible time and length
scales are limited. On the other hand, the classical continuum
methods, such as Navier-Stokes equations, are computation-
ally efficient, but fail to accurately describe atomic-level struc-

a)Electronic address: aluru@illinois.edu

ture and properties of confined fluids.17 As a result, molecular
simulations and classical continuum methods are not appli-
cable for applications that involve multiple time and length
scales ranging from the quantum to atomic to continuum
scales.18 To address these issues, we need a multiscale method
which is not only as accurate as molecular simulations, but
also as fast as classical continuum methods.

An empirical potential-based quasi-continuum theory
(EQT)19–23 is a multiscale theory, that seamlessly integrates
interatomic potentials describing various atomic interactions
into the continuum framework, to accurately predict the equi-
librium density and potential profiles of confined fluids. On
the one hand, EQT captures the atomic details, and hence, it is
more rigorous than the classical continuum methods. On the
other hand, it is based on a continuum framework, therefore,
it is computationally faster than molecular simulations.

In this work, we focus on an application of the EQT frame-
work to determine the equilibrium thermodynamic properties
of a confined fluid. For a fluid confined to a slit-like channel,
the fundamental thermodynamic relation is24

dΩ = −SdT − PdV − Ndµ + 2γdA − fSAdL, (1)

where Ω is the grand potential, S is the entropy, T is the
temperature, P is the pressure, V is the volume, N is the
number of the fluid particles, µ is the chemical potential, γ
is the wall-fluid surface tension, A is the surface area of the
wall, L is the channel width, and fS is the solvation force.
Given the thermodynamic state of a confined fluid defined by
T , V , and µ, we can determine the thermodynamic properties
of the fluid by evaluating the gradients of Ω. For example,
from Eq. (1), the wall-fluid surface tension can be computed
as γ = 1

2

�
∂Ω
∂A

�
V ,T ,L, µ

. Therefore, to determine the thermody-
namic properties of a confined fluid, we need an expression for

0021-9606/2015/142(24)/244116/7/$30.00 142, 244116-1 © 2015 AIP Publishing LLC
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Ω. Classical density functional theory (cDFT)24–26 provides a
framework to determine Ω in terms of the equilibrium density
and interaction energy obtained from EQT.

In this work, first, we use EQT to model an expres-
sion for Ω in terms of the equilibrium density and poten-
tials. Then, we can use the EQT-cDFT-based grand potential
functional to compute various thermodynamic properties of
confined fluids. The remainder of the paper is organized as
follows. In Sec. II, we describe the theory of the EQT-cDFT
approach and methods to compute the thermodynamic prop-
erties, such as adsorption, local pressure tensor, surface ten-
sion, and solvation force. In Secs. III and IV, we demonstrate
the EQT-cDFT approach by simulating Lennard-Jones (LJ)
fluids, namely, methane and argon, confined inside slit-like
channels of graphene, and compare the results from the EQT-
cDFT with the MD simulations. Finally, we draw conclusions
in Sec. V.

II. THEORY AND METHODS

A. EQT

In EQT, for a slit-channel system, the 1-D steady-state
Nernst-Planck (NP) equation,

d
dz

(
dρ
dz
+

ρ

RT
dU
dz

)
= 0, (2)

with boundary conditions

ρ(0) = 0, (3a)
ρ(L) = 0, (3b)

1
L

 L

0
ρ(z) dz = ρavg, (3c)

is solved to obtain the self-consistent density and potential
profiles of a confined fluid. In Eqs. (2) and (3), ρ is the fluid
density, U is the total potential, T is the fluid temperature, R
is the ideal gas constant, L is the channel width, ρavg is the
average density of the confined fluid, and z is the direction
normal to the slit-channel walls. The principal idea in EQT is to
compute U by a continuum approximation. In the continuum
approximation, wall and fluid particles are represented by their
local densities, and U is determined by summing the contribu-
tions from the wall and fluid as a density weighted integration
of the effective quasi-continuum interaction potentials over the
surrounding medium, i.e.,

U(r) =


ρw(r′)uwf(r)dr′ +


ρ(r′)uff(r)dr′, (4)

where r and r′ are the position vectors, r = |r − r′|, ρw is the
wall atom density, uwf(r) and uff(r) are the effective wall-fluid
and fluid-fluid pair potentials, respectively. In Eq. (4), first term
is the wall-fluid potential, Uwf(r), i.e.,

Uwf(r) =


ρw(r′)uwf(r)dr′, (5)

and second term is the fluid-fluid potential, Uff(r), i.e.,

Uff(r) =


ρ(r′)uff(r)dr′. (6)

Using structurally consistent uwf(r) and uff(r), EQT can accu-
rately predict the molecular density profiles of confined fluids,
such as simple LJ fluids,19,20 CO2,21 and water.22,23

We note that, in Eq. (6), to determine the fluid-fluid
potential energy, Uff(r), a mean field approximation (MFA) is
invoked, i.e., the fluid-fluid pair correlations are neglected.27 In
earlier work on EQT,19,20 an effective fluid-fluid pair potential,
uff(r), was modeled using a soft-core repulsion model, which
was optimized to account for the neglected pair correlations in
the MFA. In this work, we use an alternative approach to ac-
count for the fluid-fluid pair correlations. In this approach, the
fluid-fluid pair correlation is approximated by a hard-sphere
radial distribution function (RDF), ghs(r). Similar approach to
approximate the fluid-fluid correlations has been used by Tang
and Wu.28 However, the hard sphere RDF approximation may
not accurately reproduce the properties of a real fluid. There-
fore, to account for the effects of real fluid pair correlations in
the hard sphere approximation, we add a correlation correction
potential, uffccp(r), and reformulate Eq. (6) as

Uff(r) =


ρ(r′) (uff(r)ghs(r) + uffccp(r)
)

dr′. (7)

In Eq. (7), for uff(r) we use an atomistic model-based fluid-
fluid pair potential, and for ghs(r), we use the Percus-Yevick
(PY) equation for a hard sphere fluid.29–31 To model uffccp(r),
we use uniform cubic B-splines as

uffccp(r) =

1 t t2 t3

 1
6



1 4 1 0
−3 0 3 0

3 −6 3 0
−1 3 −3 1





cj

cj+1

cj+2

cj+3



, (8)

where the separation interval from 0 to the cutoff, Rffcut, is dis-
cretized into n − 1 segments, {r0,r1,r2, . . . ,rn−1}, of equal size
∆r = Rffcut/(n − 1) such that ri = i × ∆r (i ∈ (0, . . . ,n − 1)),
{c0,c1,c2, . . . ,cn+1} are the spline knots, the index j satisfies
the condition r j ≤ r < r j+1, and t =

r−r j
∆r

.

B. cDFT

cDFT is a continuum-based technique that describes the
properties of inhomogeneous fluids from a microscopic
level.24–26 It is based on the theorem that, for a fluid in an
external field, the Helmholtz free energy, F, is a unique
functional of the average molecular density profile, ρ(r),
independent of the external potential, Vext(r).24–26 Therefore,
in cDFT, the grand potential is defined as a functional of ρ(r),

Ω [ρ(r)] = F [ρ(r)] +


(Vext(r) − µ) ρ(r)dr. (9)

To determine Ω from Eq. (9), we require an expression for
F [ρ(r)]. The Helmholtz energy has two parts: (i) the ideal part,
F id [ρ(r)], and (ii) the excess part, Fex [ρ(r)], i.e.,

F [ρ(r)] = F id [ρ(r)] + Fex [ρ(r)] . (10)

The ideal part of the Helmholtz energy accounts for the ideal
gas free energy,

F id [ρ(r)] = kBT


ρ(r) �ln �ρ(r)Λ3� − 1
�

dr, (11)
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where kB is the Boltzmann constant, Λ =
(

2π~2
mkBT

) 1
2 is the ther-

mal wavelength, ~ is the reduced Planck’s constant, and m is
the mass of an atom. The excess part of the intrinsic Helmholtz
energy accounts for the non-bonded interactions between
molecules. Modeling of Fex [ρ(r)] is the most challenging part
of the cDFT. The exact expression for Fex [ρ(r)] is in general
unknown.26 There exist approximate functionals for Fex [ρ(r)],
such as fundamental-measure theory (FMT) functionals32–38

and functionals based on the statistical associating fluid theory
(SAFT).39–41 In this work, we use EQT to formulate Fex [ρ(r)]
as explained in Sec. II C.

C. EQT-cDFT

In the EQT-cDFT approach, the fluid-fluid EQT potential
model (Eq. (7)) is used to construct the excess part of the
intrinsic Helmholtz energy functional as

FEQT,ex [ρ(r)] = 1
2


ρ(r′)Uff(r′)dr′. (12)

For a confined fluid system, the external potential is due to the
wall-fluid interactions, i.e., Vext(r) = Uwf(r). Therefore, from
Eqs. (9)–(11), (7), (12), and (5), we get the EQT-cDFT-based
grand potential functional, ΩEQT [ρ(r)], as

Ω
EQT [ρ(r)] = kBT


ρ(r) �ln �ρ(r)Λ3� − 1

�
dr

+
1
2


drρ(r)


ρ(r′) �uff(r)ghs(r)

+ uffccp(r)
)

dr′ +
 �

Uwf(r) − µ
�
ρ(r)dr. (13)

We note that the chemical potential, µ, in Eq. (13) is same
as the bulk fluid chemical potential, µb, at temperature T and
density ρb. The bulk chemical potential can be defined as

µb =

(
∂Fb

∂ρb

)
T

, (14)

where Fb is the Helmholtz energy per unit volume of the bulk
fluid. Applying Eqs. (10)–(12) for a bulk fluid, Fb can be
computed as

Fb = kBT ρb
�
ln
�
ρbΛ

3� − 1
�
+

1
2
ρbUb, (15)

where Ub is the potential energy per molecule in the bulk fluid,
given by

Ub = 4πρb

 Rffcut

0
r2

(
uff(r)ghs(r) + uffccp(r)

)
dr, (16)

where Rffcut is the cutoff distance for uff(r). Hence, in the EQT-
cDFT approach, the chemical potential of a confined fluid can
be computed as

µ = kBT log
�
ρbΛ

3� +Ub. (17)

At equilibrium, Ω is minimum. Therefore, the equilib-
rium ρ(r) can be obtained by minimizing Ω [ρ(r)]. From
Eq. (13), by minimizing the EQT-cDFT-based grand potential,
ΩEQT [ρ(r)], with respect to ρ(r), we obtain the equilibrium

density profile of a confined fluid as

ρ(r) = ρb exp
(
− 1

kBT
�
Uff(r) +Uwf(r) −Ub

�)
. (18)

Therefore, in the EQT-cDFT approach, one can obtain the
equilibrium density and potential profiles of a confined fluid
by self-consistently solving Eqs. (5), (7), and (18). One of
the advantages of the EQT-cDFT approach (Eq. (18)) over the
Nernst-Planck approach (Eq. (2)) is that a solution of the EQT-
cDFT approach does not require ρavg as an input; instead, ρavg
can be computed as an output of the EQT-cDFT simulation
from the equilibrium density profile.

D. Thermodynamic properties

We consider a fluid confined in a slit-like channel, which
consists of two infinitely long plane parallel walls placed in
the x y plane at z = 0 and z = L. Therefore, the system is
periodic in the x and y directions, and we focus only on the z-
variation of the properties. From the equilibrium values of ρ(z)
and ΩEQT [ρ(z)], one can determine various thermodynamic
properties of a confined fluid.24 In this work, we compute the
properties like total adsorption, local pressure tensor, surface
tension, and solvation force as described below.

The total adsorption is the difference between the average
number of fluid molecules in the confined region with and
without the channel walls. The total adsorption per unit surface
area, Γ, can be computed as an integral over the confined
region,

Γ(L) = 1
2

 L

0
(ρ(z) − ρb) dz, (19)

where ρb is the bulk density of the fluid at a given T and µ,
and the factor of 1

2 is multiplied to account for the two channel
walls.

The surface tension, γ, according to the thermodynamic
definition, is the isothermal work required to increase the
interface by unit area, i.e., γ = 1

2

�
∂Ω
∂A

�
T , µ,L

for a slit-channel
system. Alternatively, γ can also be determined, according to
the mechanical definition, in terms of the stress transmitted
across a strip of unit width normal to the interface. In this work,
we use a mechanical definition of the surface tension given
by42

γ(L) = 1
2

 L

0
(Pn(z) − Pl(z)) dz, (20)

where Pn(z) and Pl(z) are the normal and lateral components
of the local pressure tensor. In a bulk fluid, pressure is homo-
geneous and isotropic, however, in a confined fluid, pressure
varies with the position and is anisotropic due to the wall-fluid
force field and local variations in the fluid density.43–45 For a
slit-channel system, Pl(z) can be computed as a negative of
the local grand potential density, Ω(z).46,47 Therefore, from
Eq. (13),

Pl(z) = −kBT ρ(z) �ln �ρ(z)Λ3� − 1
�

− 1
2
ρ(z)Uff(z) − (Vext(z) − µ) ρ(z). (21)
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Also, for a slit-channel system in the steady-state, Pn(z) must
be uniform across the channel width to satisfy a mechanical
equilibrium condition. Therefore, for a given channel of width
L, an average normal pressure value, Pn(L), can be computed
using the thermodynamic definition as

Pn(L) = − 1
A
∂ΩEQT(L)

∂L
, (22)

where ΩEQT(L) is the total grand potential of the channel of
width L, which can be computed from Eq. (13). To compute
∂ΩEQT(L)/∂L in Eq. (22), we use the central difference scheme
as

Pn(L) = − 1
A
ΩEQT(L + ϵ) −ΩEQT(L − ϵ)

2ϵ
, (23)

where ϵ is the infinitesimal change in the channel width.
Eqs. (22) and (23) are analogous to the volume perturbation
expressions proposed by de Miguel and Jackson48 in the
context of vapour-liquid interfaces as an extension of the
formalism introduced by Eppenga and Frenkel49 and Haris-
miadis et al.50

The solvation force, fS, is the difference between the pres-
sure exerted by a confined fluid on the channel walls and the
bulk fluid pressure, Pb.24,51 For a slit-like system in mechanical
equilibrium, the pressure exerted by a confined fluid on the
channel walls is equal to the average normal pressure, Pn(L).
Therefore, the solvation force can be computed as

fS(L) = Pn(L) − Pb. (24)

III. SIMULATION DETAILS

To demonstrate the EQT-cDFT approach, we simulate two
different confined LJ fluid systems, namely, methane-graphene
and argon-graphene slit-channel systems. In both the systems,
the LJ fluid is confined between two flat graphene walls in
equilibrium with the bulk reservoir. The thermodynamic state
of the confined fluid is defined by the bulk reservoir tempera-
ture, T , and density, ρb. We consider supercritical states of the
methane and argon fluids given in Table I.

To validate the accuracy of the EQT-cDFT approach,
we compare the EQT-cDFT results with the equilibrium MD
simulations for various channel widths from 2σ to 20σ, where
σ is the length-scale parameter for the LJ interaction between
fluid molecules (see Table II). To perform the reference MD
simulations, we use the similar procedure and the interaction
parameters given in Ref. 20. The MD simulations are per-
formed in the NVT (canonical) ensemble by GROMACS.52

Methane, argon, and graphene carbon atoms are modeled as
LJ type spherical particles. The LJ interaction parameters
used in MD simulations for various pairs of methane, argon,
and graphene carbon particles are given in Table II. The two

TABLE I. Thermodynamic states of methane and argon.

T (K) ρb (nm−3)
Methane 296 18
Argon 300 24

TABLE II. LJ interaction parameters for methane (CH4), argon (Ar), and
graphene carbon (C) atom pairs.

C12 (kJ/mol) C6 (kJ/mol) σ (nm)
CH4-CH4 0.463 41×10−4 0.151 02×10−1 0.3812
CH4-C 0.103 53×10−4 0.470 88×10−2 0.3606
Ar-Ar 0.969 29×10−5 0.621 94×10−2 0.3405
Ar-C 0.464 28×10−5 0.299 22×10−2 0.3402

graphene layers are placed along the xy plane, and the lateral
dimensions of the layers are 3.834 00 × 3.689 27 nm2. The
separation distance between the two graphene layers, i.e., the
channel width, is varied from 2σ to 20σ. The average densities
of fluid molecules, i.e., ρavg = no. of molecules/volume of
the channel, in various size channels are given in Table III.
Spherical cutoff of 1.38 nm is used for the Lennard-Jones
interactions. Wall atoms are kept fixed at their original posi-
tions. Periodic boundary conditions are specified in the x, y ,
and z directions. The simulation box is padded with a vacuum
layer of 60σ width in the z dimension to avoid the interactions
between periodic images in the z dimension. Temperature is
maintained using the Nosé-Hoover thermostat53 with 0.5 ps
time constant. All systems are equilibrated for 2 ns and produc-
tion runs of 8 ns are performed with 1 fs time step. The
density profiles are computed using 0.05σ bin size along the z
direction. To compute the local pressure tensors from MD, we
use the method of Schofield and Henderson54 in combination
with the Gaussian smoothing kernel similar to Ref. 44. The
local pressure determination method is not available in the
default GROMACS 4.6.1 version. Therefore, for this work,
we modified the GROMACS source code and implemented
the method for determining the local pressure tensor in a slit-
like geometry. Our implementation of the local pressure tensor
method in GROMACS is publicly available on GitHub.55

Recently, Vanegas et al.56 have also implemented a local pres-
sure calculation method in a custom version of GROMACS,
which is based on the Hardy–Murdoch procedure. The surface
tension and solvation force values from MD are determined by
substituting the MD local pressure values in Eqs. (20) and (24),
respectively. To estimate the errors in the properties from MD,
we perform 5 different MD simulations with different initial
conditions and obtain 5 sets of mean values of the properties.
The estimate of error in the properties from MD is found to be
less than 1.0%.

In the EQT-cDFT simulations of methane-graphene and
argon-graphene slit-channel systems, we model uwf(r) and
uff(r) as LJ potentials,

uwf(r) = Cwf
12

r12 −
Cwf

6

r6 , (25a)

uff(r) = Cff12

r12 −
Cff6
r6 , (25b)

where Cwf
12 , Cwf

6 , Cff12, and Cff6 are the usual LJ parameters
for the wall-fluid and fluid-fluid interactions. For the
methane-graphene, argon-graphene, methane-methane, and
argon-argon LJ interactions, we use the same LJ parameters
as in the MD simulations that are given in Table II. The cutoffs
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TABLE III. Average fluid densities (nm−3) in MD simulations of various size channels.

System 20σ 15σ 10σ 9σ 8σ 7σ 6σ 5σ 4σ 3σ 2σ

Methane-graphene 17.18 16.92 16.37 16.20 15.98 15.68 15.24 14.59 13.58 11.94 9.09
Argon-graphene 22.76 22.30 21.50 21.24 20.88 20.45 19.84 18.99 17.76 15.79 12.05

FIG. 1. Fluid-fluid correlation correction potentials: methane-methane (blue)
and argon-argon (red).

for the wall-fluid, Rwf
cut, and fluid-fluid, Rffcut, pair interactions are

set to 1.4 nm. For the cubic B-splines-based uffccp(r) (Eq. (8)),
we use ∆r = 0.04 nm and n = 36 and optimize the spline
knot values, {c0,c1,c2, . . . ,cn+1}, using a systematic approach
based on the potential of mean force (PMF) matching, which
we developed in Ref. 23. PMF-matching approach optimizes
structurally consistent potential parameters. Here, to optimize
the spline knot values of uffccp(r) for methane and argon, we
use the corresponding 20σ channel atomistic trajectories from
the MD simulation as a reference. More details on the PMF-
matching optimization scheme can be found in Ref. 23. Fig. 1
shows the optimized uffccp(r) for the methane-methane and
argon-argon interactions.

IV. RESULTS AND DISCUSSION

First, we self-consistently solve Eqs. (7), (5), and (18) and
obtain the equilibrium density profiles of methane and argon
inside graphene-slit channels of various widths. Fig. 2 shows
that, for both methane-graphene and argon-graphene systems,
the equilibrium density profiles from the EQT-cDFT agree
well with the MD simulations for various channel widths.
We observe that the methane and argon density profiles
are similar and oscillatory, because the confined LJ fluid
molecules arrange in the layers near the walls due to the
competition between the wall-fluid and fluid-fluid interactions.
When L = 3σ, fluid molecules arrange in two layers located
around 0.95σ distance from each wall. A layer of particles is
added mid-way between the walls with each σ increase in the
channel width, and the density of the added layer decreases
with increase in the distance from the walls. The maximum
number of layers occurs when L = 18σ. Further increase in L
only adds flat bulk-like region in the middle of a channel.

Fig. 3 shows the variation of ρavg and Γwith L. We observe
that, for the channels 2σ–20σ, Γ < 0 and ρavg < ρb. Due to

the strong repulsion from the wall atoms, fluid molecules
cannot access the volume very close to the walls. Moreover,
the layering of particles not only forms the regions of high
(>ρb) densities, but also the regions of low (<ρb) densities
inside a channel. The net effect of the excluded volume and
layering is that the total number of fluid molecules inside the
channel of a volume V is smaller than the number of molecules
in the bulk of the same volume. We also observe that, for the
smaller channels with no bulk-like region, Γ oscillates with L.
The oscillations in Γ follow the formations of adsorbed layers
with increasing L. The minimum in Γ occurs when adsorbed
particles form an additional layer to arrange in a closely packed
structure and reduce the average density.

Next, we compute the local pressure tensor, surface ten-
sion, and solvation force. Fig. 4 shows the lateral pressure
profiles in the methane-graphene and argon-graphene systems.
It can be observed that the lateral pressure predictions from
the EQT-cDFT compare well with the MD for various channel
widths. We observe that, in a channel, Pl(z) oscillates similar to
ρ(z). The lateral pressure values are much higher near the walls
than the bulk pressure. The maximum value of Pl(z) occurs
near the first density peak, i.e., 0.95σ from the walls, and it is
≈5 times greater than the bulk pressure. Such high pressures in
a confined fluid near the channel walls provide explanations for
the confined fluid nanophases,14,57 such as high pressure solid
phases58,59 and chemical reactions.13 Away from the walls, the
oscillations in Pl(z) decay towards the bulk value.

FIG. 2. Comparison of density profiles of methane (a) and argon (b) from
EQT-cDFT (lines) and MD (circles) simulations at different channel widths:
20σ (red), 9σ (blue), and 3σ (green).
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FIG. 3. EQT-cDFT predictions for total adsorption (a) and average density
(b) of methane (blue solid lines) and argon (red solid lines) molecules inside
graphene slit channels of various widths. In subfigure (b), dotted lines corre-
spond to the bulk densities of methane (blue) and argon (red).

Fig. 5 shows the variation of the normal pressure, sur-
face tension, and solvation force as a function of L for both
methane-graphene and argon-graphene systems. We observe
that the predictions for Pn(L), γ(L), and fS(L) from the EQT-
cDFT simulations compare well with the MD simulations.
Fig. 5 shows that the normal pressure oscillates with L for
channels less than 9σ and it approaches the bulk pressure value

FIG. 4. Comparison of lateral pressure profiles of methane (a) and argon (b)
from EQT-cDFT (lines) and MD (circles) simulations for various channel
widths: 20σ (red), 9σ (blue), and 3σ (green).

FIG. 5. Variation of normal pressure (a), surface tension (b), and solvation
force (c) of methane (blue) and argon (red) with channel width. Lines are
EQT-cDFT results and circles are MD results.

for L > 9σ. The oscillations in the normal pressure are well-
known and they arise because of the oscillations in the average
density values (see Fig. 3).14,43,51,57,58 Similar to the normal
pressure, the surface tension and solvation force oscillate for
the smaller channels and the amplitudes of oscillations decay
rapidly with increasing L.

V. CONCLUSIONS

In this work, we presented a multiscale continuum-based
method to predict the structure and thermodynamic properties
of confined fluids. The multiscale method is a combination
of two approaches, namely, EQT and cDFT. We developed a
free energy functional for cDFT based on EQT potentials. We
demonstrated the EQT-cDFT approach by simulating methane
and argon confined in slit-like graphene channels of various
widths. The EQT-cDFT predictions for the structure and ther-
modynamic properties, like the density, adsorption, local pres-
sure tensor, surface tension, and solvation force, compare well
with the MD simulations. Therefore, the EQT-cDFT approach
is a promising approach to accurately predict the structure and
thermodynamic properties of confined fluids. Finally, we note
that there is a scope to further test the EQT-cDFT approach for
more complex fluid systems, such as confined water, mixtures,
and electrolyte solutions.
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