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We develop thermodynamic state-dependent single-site isotropic coarse-grained potentials to predict
the structure of water confined inside graphene slit-like channels by two multiscale simulation ap-
proaches: the coarse-grained molecular dynamics (CG-MD) and the empirical potential-based quasi-
continuum theory (EQT). The structurally-consistent coarse-grained potentials for the CG-MD and
EQT are systematically determined from the reference all-atom SPC/E water MD (AA-MD) results.
For optimization of the CG-MD potentials, the relative entropy based coarse-graining method is used,
and for determination of the EQT potentials, we develop a potential of mean force matching scheme.
The optimized coarse-grained potentials are found to be dependent on the thermodynamic state. They
are evaluated for their ability to predict the density profile of confined water, and it is found that the
results obtained by the CG-MD and EQT simulations are in good agreement with the reference AA-
MD results. © 2012 American Institute of Physics. [http://dx.doi.org/10.1063/1.4769297]

I. INTRODUCTION

Water in confined spaces, especially at length scales rang-
ing from a few Angstroms to several nanometers, exhibits
highly unusual properties.1 Study of these unusual proper-
ties of confined water is important to understand the func-
tion of biomolecular systems and enables the design of novel
nanofluidic applications.2 Nanoscale structure and proper-
ties of water cannot be captured by the classical continuum
models.3 Therefore, over the past decade, molecular sim-
ulation techniques, such as molecular dynamics (MD) and
Monte Carlo (MC) simulations, have been widely used to
study the microscopic properties of confined water. However,
these techniques are computationally expensive, and accessi-
ble time and length scales are limited. As a result, these meth-
ods are not applicable for many applications of practical inter-
est that involve multiple time and length scales ranging from
the quantum to atomic to continuum scales.4

Recently, various multiscale simulation approaches have
been developed to efficiently simulate systems of multiple
time and length scales.4–6 Based on the resolution level, vari-
ous simulation approaches can be divided into four main cat-
egories: (i) quantum level, which is the fundamental level
where the change in electronic wavefunctions are explic-
itly considered, (ii) detailed all-atom (AA) level, where the
electrons are considered only implicitly but all the atoms of
the given system are explicitly simulated, (iii) intermediate
particle-based coarse-grained (CG) level, where several atoms
of the given system are represented by a single CG bead, and
(iv) continuum level where the system is represented by vol-
ume elements such as in computational fluid dynamics. Mul-
tiscale simulation methods try to capture properties of a given
system at various levels of resolution by combining and/or

a)Electronic mail: aluru@illinois.edu.

linking different simulation models. It is important that the
individual models on different levels of resolution are sys-
tematically linked such that these models are thermodynam-
ically and/or structurally consistent. This scale-bridging can
be achieved by appropriately devising the effective interac-
tion potentials at different levels of resolution. The process of
determining effective interactions at coarser-level from more
detailed high resolution level is referred to as the systematic
coarse-graining.

The objective of this study is to systematically coarse-
grain degrees of freedom of confined water from the detailed
all-atom level to the cheaper particle-based CG level, and to
the continuum-based level. There exists many different AA
level models for water with varied degrees of complexity and
accuracy.7, 8 Here, we use the extended simple point charge
(SPC/E)9 model for the AA level confined water simulations.
Though particle-based CG systems are simulated using sim-
ilar molecular simulation techniques as in AA simulations,
they allow faster computations due to reduced degrees of free-
dom and simpler interaction potentials as compared to AA
models. For continuum-based simulation, we use empirical
potential-based quasi-continuum theory (EQT).10 EQT is a
simple and fast approach to predict the inhomogeneous den-
sity and potential profiles of a confined fluid. In EQT, for a
slit-channel system, the 1-D steady-state Nernst-Planck (NP)
equation,

d

dz

(
dρ

dz
+ ρ

RT

dU

dz

)
= 0, (1)

with boundary conditions

ρ(0) = 0, (2a)

ρ(L) = 0, (2b)
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1

L

∫ L

0
ρ(z) dz = ρavg, (2c)

is solved to obtain self-consistent density and potential pro-
files of a confined fluid. In Eqs. (1) and (2), ρ is the fluid
density, U is the total potential, T is the fluid temperature,
R is the ideal gas constant, L is the channel width, ρavg

is the average density of confined fluid, and z is the di-
rection perpendicular to the slit-channel wall. The principal
idea in EQT is to compute U by the continuum approxima-
tion. In the continuum approximation, wall and fluid parti-
cles are represented by their local densities, and U is deter-
mined by separately summing the contributions from the wall
and fluid as a density weighted integration of the effective
quasi-continuum interaction potentials over the surrounding
medium, i.e.,

U (r) =
∫

ρwall(r
′)uwf(|r − r ′|)dr ′ +

∫
ρ(r ′)uff(|r − r ′|)dr ′,

(3)
where ρwall is the wall atom density, uwf(r) and uff(r) are the
effective wall-fluid and fluid-fluid quasi-continuum pair po-
tentials, respectively. Further details on EQT can be found in
Refs. 10 and 11.

Various systematic coarse-graining methods have been
developed to derive thermodynamically and/or structurally
consistent CG potentials, such as iterative Boltzmann in-
version (IBI), inverse Monte Carlo (IMC), force matching
(FM), and relative entropy minimization.12–14 In the litera-
ture, these methods have been used to develop CG poten-
tials for bulk water, which can reproduce structural proper-
ties such as the radial distribution function (RDF).13–15 How-
ever, the structure of confined water can be very different
from bulk water,1 hence, CG potentials for bulk water can-
not reproduce the structural properties of confined water. In
Ref. 11, we developed CG potential models for the struc-
tural prediction of water confined inside graphite and sili-
con slit-like channels at the standard thermodynamic state.
CG models, however, suffer from transferability issues, i.e.,
they are thermodynamic state dependent and may not be ac-
curate for states other than the reference state for which they
are optimized.16, 17 Therefore, the focus of this study is to de-
velop thermodynamic state dependent CG potentials of con-
fined water for the particle-based CG and EQT simulation
approaches.

The remainder of the paper is organized as follows. In
Sec. II, we provide the reference MD simulation details of
the confined water systems considered. In Sec. III, we de-
scribe the functional forms and coarse-graining techniques
used to model the CG potentials. Accuracy and transferability
of these CG potentials are discussed in Sec. IV. Finally, we
draw conclusions in Sec. V.

II. MD SIMULATIONS

We simulate water structure between two flat parallel
graphene layers at various thermodynamic states, from
ambient (298 K) to supercritical conditions (673 K) with
a range of densities between 0.66 and 1.0 g/cm3 simi-

lar to the one considered in Ref. 18. The two graphene
layers are placed along the XY plane, and the lateral di-
mensions of the layers are 3.83400 × 3.68927 nm2. The
z coordinate is perpendicular to the graphene layers, and
the separation distance between the two graphene layers
is varied from 2σ to 20σ , where σ (=0.317 nm) is the
length-scale parameter for the Lennard-Jones interaction
between oxygen atoms of water molecules. We follow
the same procedure described in Ref. 11 to determine the
average density, ρavg, of confined water, which is defined as
ρavg = no. of molecules adsorbed/volume of the channel.
For channels of widths larger than 4σ , linear superposition
approximation (LSA)19 is used to determine ρavg, and for
smaller channels, isothermal-isosurface-isobaric ensemble20

equilibration simulations are performed with the channel
attached to the bulk water reservoir at the saturated liquid
density for the corresponding temperature and saturation
pressure, which are obtained from Ref. 21.

All-atom molecular dynamic (AA-MD) simulations
are performed in the NVT (canonical) ensemble by
GROMACS.22 Water is modeled using the extended simple
point charge (SPC/E)9 model; the interaction parameters are
the same as in Ref. 11. Spherical cutoff of 1.5 nm is used for
the Lennard-Jones interactions, and electrostatic interactions
are computed by the particle mesh Ewald (PME)23 method
with an extra vacuum of 19 nm above the graphene layer
along with the appropriate correction for the slab geometry.
Wall atoms are kept fixed at their original positions. Peri-
odic boundary conditions are specified in the x, y, and z di-
rections. Temperature is maintained using the Nosé-Hoover
thermostat24 with 0.2 ps time constant. All systems are equi-
librated for 5 ns and production runs of 45 ns are performed
with 1 fs time step. The density profiles are computed using
0.05σ bin size along the z direction.

We also perform coarse-grained MD (CG-MD) simula-
tions using the CG potentials developed in this work. CG-MD
simulations are performed using GROMACS with the same
system settings as for the AA-MD simulations, except that the
CG interactions are specified using the tabulated potentials.
With 1 fs timestep, it is found that the CG-MD simulations
are 5 times faster than the AA-MD simulations.

III. STRUCTURE-BASED COARSE-GRAINING

It is often the case that the models with coarse-grained in-
teractions cannot reproduce simultaneously all the thermody-
namic and structural properties of the reference system.15–17

Here, the property of interest for coarse-graining is the equi-
librium center of mass (COM) density profile of confined
water obtained by the reference AA-MD simulations at var-
ious thermodynamic states and channel widths. We follow
the approach in which first the coarse-grained interactions for
the CG-MD are determined from the reference AA-MD re-
sults and then the effective interactions for the EQT are op-
timized. Methods we use to determine such effective interac-
tions for the CG-MD and EQT approaches are discussed in
Subsections III A and III B.
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A. CG-MD potentials

In the CG-MD model for the confined water system, we
represent one water molecule with one coarse-grained bead at
the COM and retain all the atomistic details of the graphene
layers. In this representation of the confined water system,
we need to specify the effective interaction potentials be-
tween water-water CG beads and between graphene-water CG
beads. In the reference all-atom model, carbon atoms of the
graphene layers are modeled as simple LJ-type atoms, and
hence, the interaction between a carbon atom and a water
molecule is already a single-site isotropic potential. However,
as discussed in Ref. 11, due to inherent inhomogeneity of
the confined water micro-structure, a single spatially uniform
water-water CG pair potential along with the original wall-
water LJ pair potential may not reproduce the structural prop-
erties of confined water. To address this issue, in Ref. 11, we
used the coarse-grained correction potential between a wall
atom and a water CG bead in addition to the original LJ po-
tential. Here, instead of separately modeling these two types
of CG potentials between a wall atom and a water CG bead,
we consider a single effective carbon-water CG potential, and
optimize it such that it accounts for the surface effects on the
water structure.

To model the water-water CG-MD potential, uww
CG(r), and

the carbon-water CG-MD potential, ucw
CG(r), we use a func-

tional form based on uniform cubic B-splines (SP). In a pair
potential function, uSP(r), based on uniform cubic B-splines,
the separation interval from 0 to the cut-off distance, Rcut, is
discretized into n − 1 segments, {r0, r1, r2, . . . , rn − 1}, of
equal size �r = Rcut/(n − 1) such that ri = i × �r, where i
∈ (0. . . n − 1). Then, given n + 2 real values {c0, c1, c2, . . . ,
cn + 1} called the spline knots, the value of a pair potential at
a separation distance r is determined by

uSP(r) = [ 1 t t2 t3 ]
1

6

⎡
⎢⎢⎣

1 4 1 0
−3 0 3 0

3 −6 3 0
−1 3 −3 1

⎤
⎥⎥⎦

⎡
⎢⎢⎣

cj

cj+1

cj+2

cj+3

⎤
⎥⎥⎦,

(4)

where the index j is determined such that rj ≤ r < rj + 1, and t
is given by

t = r − rj

�r
. (5)

The SP potential form, uSP(r), is not only suitable for ana-
lytical treatment, but also exhibits remarkable flexibility and
can represent various complex functional characteristics of
pair potentials for sufficiently large number of knots. In this
work, for both uww

CG(r) and ucw
CG(r), we set Rcut = 1.0 nm with

a grid spacing of �r = 0.02 nm, i.e., n = 51. Thus, we need
to optimize a total of 53 knot values for each CG-MD po-
tential, i.e., the knot values {cww

0,CG, cww
1,CG, cww

2,CG, . . . , cww
52,CG}

for the water-water CG-MD potential and the knot values
{ccw

0,CG, ccw
1,CG, ccw

2,CG, . . . , ccw
52,CG} for the carbon-water CG-MD

potential.
To determine the optimum spline knots for uww

CG(r)
and ucw

CG(r), we use the recently introduced coarse-graining
method by Shell25 based on the relative entropy, Srel, defined

as

Srel =
∑

i

pAA(i) ln

(
pAA(i)

pCG (M(i))

)
+ 〈Smap〉AA, (6)

where i is a particular configuration of the atom sites in the
AA-MD ensemble, M is the mapping operation to generate a
corresponding configuration I of the CG sites, i.e., I = M(i),
pAA and pCG are the configurational probabilities based on the
AA-MD and CG-MD potentials, respectively, and 〈Smap〉AA is
the mapping entropy due to the average degeneracy of the AA
configurations mapping to the same CG configuration, given
by

Smap(I ) = ln
∑

i

δI,M(i), (7)

where δ is the Kronecker delta function. From Eq. (7), it can
be shown that 〈Smap〉AA does not depend on the CG-MD po-
tential parameters, but it is a unique function of the map-
ping operator, M, and the AA configurational probabilities,
pAA(i). The log-likelihood based derivation of the relative en-
tropy for molecular systems, as defined in Eq. (6), is provided
in Ref. 25. The relative entropy quantifies the extent of the
configurational phase-space overlap between two molecular
ensembles.26 It is a measure of the discrepancies between var-
ious properties of the CG-MD and AA-MD ensembles. Phys-
ically, Srel can be interpreted as the log-probability that one
test configuration of the model CG-MD ensemble is repre-
sentative of the target AA-MD ensemble, and when the like-
lihood is a maximum, Srel is at a minimum. Hence, the nu-
merical minimization of Srel with respect to the parameters
of the CG-MD model can be used to optimize it. One of the
advantages of the relative entropy based coarse-graining is
that one can design CG potentials using analytical function
forms, which are desired in the theoretical treatments such as
EQT, whereas, methods, such as IBI, use tabulated potentials.
Also, Chaimovich and Shell27 have demonstrated that there
exist connections between the relative entropy based coarse-
graining method and other coarse-graining methods. In
Ref. 27, it was shown that under some conditions based on
the modeling of CG potentials, relative entropy minimization
can give the same CG potentials as other methods, e.g., it is
equivalent to the IBI when the CG interactions are modeled
using the finely tabulated pair additive potentials, and to the
FM when the CG potential is modeled in the most general way
such that it is a function in the space of N −body interactions,
where N is the number of coarse-grained degrees of freedom.
More details about the relative entropy based coarse-graining
method and its applications can be found in Refs. 14, 25, 27,
and 28. As described in Sec. II, both the AA-MD and CG-
MD systems are considered in the canonical ensemble. In the
canonical ensemble, the relative entropy simplifies to

Srel = β〈UCG − UAA〉AA − β〈ACG − AAA〉AA + 〈Smap〉AA,

(8)
where all the averages are computed in the reference AA-MD
ensemble, and ACG and AAA are the configurational part of
the Helmholtz free energies from the CG-MD and the AA-
MD potentials, respectively.
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The CG-MD potential parameters, λ = {cww
0,CG, cww

1,CG,

cww
2,CG, . . . , cww

52,CG, ccw
0,CG, ccw

1,CG, ccw
2,CG, . . . , ccw

52,CG}, are opti-
mized by minimizing Srel. Here, we follow the coupled
Newton-Raphson strategy for the relative entropy minimiza-
tion as described in Ref. 27. In this approach, the parameters
λ are refined iteratively as

λk+1 = λk − χH−1
Srel

· ∇λSrel, (9)

where k is the iteration index, χ ∈ (0. . . 1) is the relaxation pa-
rameter that can be adjusted to ensure the convergence, ∇λSrel

is the vector of the first derivatives of Srel with respect to λ

and HSrel is the Hessian matrix of Srel. The details of com-
puting Srel and HSrel are given in Appendix A. This procedure
of optimizing the CG-MD potential parameters by the rela-
tive entropy minimization is implemented in the open-source
VOTCA code,12 and it will be available in version 1.3 of
VOTCA. The optimized carbon-water and water-water CG-
MD potentials obtained by the relative entropy minimization
are discussed in Subsection IV A.

B. EQT potentials

As described in Sec. I, in EQT, we need the effective
carbon-water and water-water quasi-continuum pair poten-

tials to evaluate the total potential profile, U(z), by Eq. (3).
In prior works,10, 11, 29, 30 it was shown that one can use the
particle-based effective single-site isotropic pair potential be-
tween a wall particle and a fluid particle to determine the wall-
fluid contribution to U(z). Thus, to compute the carbon-water
potential profile, U cw(z), we use the CG-MD carbon-water
pair potential as

U cw(r) =
∫

ρc(r ′)ucw
CG(|r − r ′|)dr ′, (10)

where, ρc is the density of carbon atoms in the graphene
layer, which is taken to be 38.18 atoms/nm2. The fluid-fluid
part, i.e., the water-water potential profile, Uww(z), is given
by

Uww(r) =
∫

ρ(r ′)uww
EQT(|r − r ′|)dr ′, (11)

where uww
EQT(r) is the water-water effective quasi-continuum

pair potential. One should model uww
EQT(r), such that it is

finite for r → 0, and it should take into account the ef-
fects of the neglected pair correlations in the mean-field ap-
proximation (MFA) of Eq. (11).11 Therefore, we model the
water-water effective quasi-continuum pair potential, uww

EQT(r),
as

uww
EQT(r) =

⎧⎪⎪⎨
⎪⎪⎩

0, r ≤ Rcrit

a0 + a1(r − Rmin) + a2(r − Rmin)2, Rcrit < r ≤ Rmin,

uSP(r), Rmin < r ≤ Rcut

(12)

where Rcrit and Rmin are the control parameters, which define
the zero potential region and the soft-core of uww

EQT(r), respec-
tively. The soft-core region is modeled using the quadratic
polynomial with the coefficients a0, a1, and a2. Similar
approach of modeling the soft-core of the fluid-fluid quasi-
continuum pair potentials to ensure the finite potential values
for small r is followed previously in Refs. 10, 11, 29, and 30.
In the region from Rmin to the cut-off distance Rcut, uww

EQT(r)
is modeled using the uniform cubic B-splines form, uSP(r),
given by Eq. (4). In this work, we optimize a1, a2, and the
cubic B-spline knot values of uww

EQT(r) in Eq. (12), i.e.,
λ = {a1, a2, c

ww
0,EQT, cww

1,EQT, cww
2,EQT, . . .}. We fix Rcrit

= 0.05 nm, Rmin = 0.26 nm, Rcut = 1.04 nm, and use grid
spacing of 0.08 nm for the cubic B-spline part of uww

EQT(r).
a0 is determined by imposing the C0 continuity condition
at Rmin.

Here, we develop a systematic technique to optimize
the parameters λ of uww

EQT(r) such that the target equilib-
rium COM density profile, ρ tgt(z), of the confined water
can be reproduced by EQT. Similar to the IBI method, in
which, to reproduce the target RDF, the CG potential is op-
timized such that the Boltzmann relation between the two-
body PMF and the RDF is satisfied, for reproducing ρ tgt(z)
the parameters of uww

EQT(r) must satisfy the Boltzmann relation

given by

ρ(z) = ρ0 exp

(
− Ū (z)

RT

)
, (13)

where ρ0 is the density at the reference point z0 and Ū (z) is
the total PMF profile computed as

Ū (z) = U (z) − U (z0). (14)

Here, for the slit-like graphene-water system, we use the mid-
point of the channel as the reference point. Therefore, to quan-
tify the accuracy of uww

EQT(r) parameters, we define the metric:

εB = 1

2L

∫ L

0

(
ρ

tgt
0 exp

(
− Ū (z)

RT

)
− ρ tgt(z)

)2

dz, (15)

where ρ
tgt
0 is the target density at the reference point z0 and

Ū (z) is determined by using the target density profile, ρ tgt(z).
The quantity εB in Eq. (15) gives the average squared er-
ror in the Boltzmann relation due to the given parameters of
uww

EQT(r). Hence, the objective is to determine the parameters
of uww

EQT(r) such that the quantity εB is minimized. Since, min-
imizing εB is equivalent to reproducing the target total PMF
profile, it is in essence a PMF-matching technique.
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Similar to the relative entropy minimization as described
in Subsection III A, for the minimization of εB, we use the
coupled Newton-Raphson scheme such that the parameters of
uww

EQT(r), λ, are refined iteratively as

λk+1 = λk − χHεB
−1 · ∇λεB, (16)

where k and χ have the same definitions as in Eq. (9), ∇λεB

is the vector of the first derivatives of εB with respect to λ,
and HεB is the Hessian matrix of εB. The details of computing
∇λεB and HεB are given in Appendix B. More discussion on
the values of Rcrit, Rmin, and the optimized EQT potentials is
given in Subsection IV B.

IV. RESULTS

The COM density profiles of water confined inside the
graphene channel for a range of channel widths at different
thermodynamic states obtained from the reference AA-MD
simulations are illustrated in Fig. 2. It can be seen that at
all thermodynamic states and channel widths, there exist two
distinguishable water layers near the graphene surface. For
channels larger than 6σ , beyond the second interfacial layer,
there exists bulklike water in the central region of a channel.
The locations of both the interfacial layers do not vary much
with the thermodynamic state, i.e., the first and second layers
are located near 1.025σ and 1.956σ , respectively, from the
graphene surface at all thermodynamic states. Whereas, the
relative magnitudes of the interfacial density layers decrease
with decrease in ρbulk. Similar observations about the thermo-
dynamic state dependence of density profile of water confined
inside the graphene channel are made by Martí and Guàrdia.18

Since the average contributions of the coarse-grained
atomic degrees of freedom depend on the thermodynamic
state of the reference system, CG potentials suffer from trans-
ferability issues, i.e., CG potential constructed from a refer-
ence system at a given thermodynamic state may not directly
be used for modeling the underlying system at a different state
point.16, 17 Therefore, we generate a different set of CG-MD
and EQT potentials for each thermodynamic state of the con-
fined water, given in Table I. For both, the relative entropy
minimization and the PMF-matching based coarse-graining,
we use the 10σ channel AA-MD system as the target sys-
tem. We find that, as described in Subsections IV A and IV B,
though the CG potentials are optimized for the reference 10σ

channel of each thermodynamic state, they are transferable
across different channel widths at the same thermodynamic
state.

TABLE I. Thermodynamic states of confined water considered in this work.

State T [K] ρ [gm/cm3]

I 298 1.0
II 328 0.985
III 400 0.935
IV 523 0.8
V 673 0.66

A. CG-MD potentials

Fig. 1 shows the carbon-water and water-water CG-MD
potentials obtained by the relative entropy minimization for
different thermodynamic states. The optimum parameter val-
ues of the CG-MD potentials are provided in the supplemen-
tary information.31 We first evaluate these CG-MD potentials
for their ability to predict the COM density profile of the con-
fined water by performing the CG-MD simulations. Fig. 2
shows the CG-MD results for the COM density profiles of
water in multiple channel widths at different thermodynamic
states. It is evident that the CG-MD potentials predict the
COM density profile of the confined water sufficiently accu-
rately as compared to the reference AA-MD results, and it is
found that the root-mean-squared deviation (RMSD) between
the CG-MD and AA-MD results is less than 0.055.

From Fig. 1, further observations can be made about the
state dependent characteristics of the water-water and carbon-
water CG-MD potentials. It can be seen that both the CG-
MD pair potentials depend substantially on the thermody-
namic state. However, water-water CG-MD potential exhibits
a characteristic core-softened double-well-type form at all
the states considered. This observation is consistent with the
studies of single-site isotropic potentials for water.13, 14, 17, 32, 33

There are two important energy and length-scales to core-
softened double-well-type potential form. We find that, for
the water-water CG-MD potential, the energy-scale of the
first well varies significantly with the thermodynamic state: it
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FIG. 1. Coarse-grained effective potentials for CG-MD and EQT simula-
tions at different thermodynamic states. The top subfigure shows water-water
potentials where solid lines are CG-MD potentials and dashed lines are EQT
potentials. The bottom subfigure shows carbon-water potentials. In both the
subfigures, red lines are for T = 298 K, blue for T = 328 K, green for
T = 400 K, orange for T = 523 K, and cyan for T = 673 K.
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FIG. 2. Comparison of COM density profiles of water from AA-MD, CG-
MD, and EQT simulations at different thermodynamic states and channel
widths: (a) T = 298 K, 10σ (red), 7σ (blue), and 4σ (green); (b) T = 328 K,
10σ (red), 8σ (blue), and 5σ (green); (c) T = 400 K, 10σ (red), 8σ (blue),
and 4σ (green); (d) T = 523 K, 10σ (red), 7σ (blue), and 3σ (green); and (e)
T = 673 K, 10σ (red), 6σ (blue), and 3σ (green). In all subfigures, circles are
AA-MD results, solid lines are CG-MD results, and dashed lines are EQT
results. z* is defined as z/σ and ρ∗ = ρ/ρbulk; value of ρbulk for each T is
given in Table I.

continuously falls from positive values at lower temperatures
to negative values at higher temperatures. The second-well
is always attractive and does not vary significantly with the
thermodynamic state. Also, we note that the difference be-
tween the second inflection point and the second energy well
decreases with increasing temperature. Wang et al.15 suggest
that this difference governs the tetrahedral packing of water
molecules: the larger the difference, the stronger the tetrahe-
dral packing. This implies that for the graphene-water sys-
tem as temperature increases the tetrahedral packing of wa-
ter molecules becomes weaker, which is physically consistent
with the observations by Martí and Guàrdia18 that as tem-
perature increases, the number of hydrogen bonds per water
molecule decreases. In contrast to the significant state depen-
dence of the energy-scales, both the length-scales, i.e., loca-
tions of the first and second well, vary very little with the
state, and the ratio of the two length-scales is in the range
0.61−0.67, which is in agreement with the observation made
by Yan et al.,32 that in order to have water-like characteris-
tics, this ratio should be ≈0.6. Similar observations are made
by Chaimovich and Shell14 about the thermodynamic state
dependence of the energy and length-scales of the coarse-
grained bulk water potential.

B. EQT potentials

As mentioned in Subsection III B, in EQT, we use the
same CG-MD potential for the carbon-water pair interac-
tion. Fig. 1 shows the optimum water-water pair potentials
for EQT obtained by the PMF-matching method. The opti-
mum parameter values of uww

EQT(r) are provided in the supple-
mentary information.31 We note that, for each thermodynamic
state, the optimum values of a1,a2, and the cubic B-spline
knot values for uww

EQT(r) depend significantly on the choice
of Rcrit and Rmin values. Herein, we set Rcrit = 0.05 nm and
Rmin = 0.26 nm for all the thermodynamic states such that
the optimized uww

EQT(r) follows as closely as possible the char-
acteristics of the CG-MD water-water potential in the region
from Rmin to Rcut. As discussed in Subsection III B, the soft-
core part of the uww

EQT(r) for the region r < Rmin has mainly
been introduced to avoid the numerical singularity issues, and
it lacks any physical justification. It can be observed that, for
each thermodynamic state, though the water-water EQT po-
tential has the same core-softened double-well-type charac-
teristics as in the CG-MD case, its length-scales are slightly
shifted and energy-scales are more attractive as compared to
the CG-MD water-water potential. This behaviour can be con-
tributed to the MFA of Eq. (11).34 The MFA neglects the
water-water pair correlations, which should enhance the at-
tractive interactions. Hence, the effective water-water EQT
potentials are more attractive to account for the effects of the
pair correlation.

Next, we evaluate these EQT potentials for their ability
to predict the COM density profile of the confined water by
performing the EQT simulations. As described in Ref. 10, the
numerical algorithm based on an iterative scheme is used to
solve Eqs. (1), (2), (3), (10) and (11) in a self-consistent man-
ner. From Fig. 2, it is evident that the EQT potentials predict
the COM density profile of the confined water accurately as
compared to the reference AA-MD results, and it is found that
the RMSD between the EQT and AA-MD results is less than
0.044.

C. Transferability

Although, the CG potentials are significantly state-
dependent, one can transfer a CG potential optimized for a
particular thermodynamic state to a different state by an ap-
propriate state-dependent scaling relation.35 Such scaling re-
lations, if exist, can be useful to derive CG potentials for wider
thermodynamic states from the CG potentials of a few repre-
sentative states, which are optimized explicitly by a coarse-
graining technique. Farah et al.35 used a 2-point linear inter-
polation formula given by

u(r, T ) = CL × u(r, TL) + CU × u(r, TU) (17)

to determine the temperature dependent CG potentials for liq-
uid n-hexane in a region of homogeneous phases. In Eq. (17),
the CG potential at temperature T, u(r, T), is determined from
the two known CG potentials u(r, TL) and u(r, TU) at temper-
atures TL and TU, where TL ≤ T ≤ TU, and CL and CU are the
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FIG. 3. Interpolated CG potentials for the confined water. The top subfigure
shows water-water potentials where solid lines are CG-MD potentials and
dashed lines are EQT potentials. The bottom subfigure shows carbon-water
potentials. In both the subfigures, red lines are for T = 310 K, and blue for T
= 473 K.

mixing coefficients given by

CL = TU − T

TU − TL
, (18a)

CU = T − TL

TU − TL
. (18b)

Herein, we test the applicability of 2-point linear inter-
polation formula for the confined water by evaluating the ac-
curacy of the CG potentials derived for the saturated liquid
water states: T = 310 K, ρ = 0.9933 gm/cm3, and T = 473 K,
ρ = 0.863 gm/cm3. For T = 310 K, we use TL = 298 K and
TU = 328 K, and for T = 473 K, we use TL = 400 K and
TU = 523 K. The CG-MD and EQT potentials obtained by
this procedure are shown in Fig. 3. From Fig. 4, it is evident
that the density profiles of water predicted by the scaled CG-
MD and EQT potentials are in reasonably good agreement
with the reference AA-MD results. Therefore, it is clear that
the 2-point linear interpolation can be used to derive state de-
pendent CG potentials for the confined water in the region
of the saturated liquid phases. We note that there is a scope
to further investigate, in detail, the transferability of the CG
potentials for the confined water in the region of much wider
thermodynamic states using the relative entropy minimization
and the PMF-matching techniques.
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FIG. 4. Comparison of COM density profiles of water from AA-MD, CG-
MD, and EQT simulations using interpolated CG potentials for 10σ channel:
(a) T = 310 K and (b) T = 473 K. In both the subfigures, circles are AA-MD
results, solid lines are CG-MD results, and dashed lines are EQT results. z*
is defined as z/σ and ρ∗ = ρ/ρbulk.

V. CONCLUSIONS

In the present study, we demonstrated a systematic
coarse-graining approach to optimize the structurally con-
sistent carbon-water and water-water coarse-grained poten-
tials for the graphene-water system. Two multiscale simula-
tion approaches are demonstrated, namely the particle-based
coarse-grained molecular dynamics (CG-MD) and the empiri-
cal potential-based quasi-continuum theory (EQT). It is found
that the relative entropy based coarse-graining technique can
be used to derive structurally consistent CG-MD potentials
for the confined water. For determination of the EQT effec-
tive potentials, we developed a PMF-matching technique, and
it is found to be a robust technique to derive effective poten-
tials, which can be used in EQT to accurately predict the den-
sity profiles of the confined water. Both the carbon-water and
water-water CG potentials are found to be significantly depen-
dent on the thermodynamic state. However, for all the thermo-
dynamic states studied, it is found that the water-water CG
potential exhibits so-called core-softened double-well type
characteristics, whose energy-scales are significantly state-
dependent, whereas length-scales change very little. Also, it
is shown that the 2-point linear interpolation formula can be
useful to derive the CG potentials at thermodynamic states
other than the one optimized here. Finally, we note that there
is scope to further study, in detail, the scaling relations to de-
rive the CG potentials for the confined water at wider thermo-
dynamic states based on the optimized CG potentials at few
representative states.
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APPENDIX A: RELATIVE ENTROPY MINIMIZATION

To minimize Srel using the coupled Newton-Raphson
scheme given by Eq. (9), we need to determine ∇λSrel and
HSrel . ∇λSrel can be computed as

∇λSrel = β

〈
∂UCG

∂λ

〉
AA

− β

〈
∂UCG

∂λ

〉
CG

, (A1)

and HSrel is given by

Hij,Srel = β

〈
∂2UCG

∂λi∂λj

〉
AA

− β

〈
∂2UCG

∂λi∂λj

〉
CG

+β2

〈
∂UCG

∂λi

∂UCG

∂λj

〉
CG

−β2

〈
∂UCG

∂λi

〉
CG

〈
∂UCG

∂λj

〉
CG

. (A2)

Equations (A1) and (A2) require the average derivatives of
the total CG potential energy in the AA-MD and CG-MD en-
sembles. To compute the averages in the AA-MD ensemble,
a single well converged reference AA-MD simulation is per-
formed and its AA configurations are saved, and then the aver-
age derivatives of the total CG potential energy are computed
using the CG-MD pair potentials by processing the CG sites
configurations in the AA-MD ensemble, which are obtained
by mapping the reference AA sites configurations, as〈

∂UCG

∂λi

〉
AA

=
〈∑

m<n

∂uCG(rmn)

∂λi

〉
AA

, (A3a)

〈
∂2UCG

∂λiλj

〉
AA

=
〈∑

m<n

∂2uCG(rmn)

∂λiλj

〉
AA

, (A3b)

where, the sum is performed over all the pairs (m, n) of the
CG sites, uCG(r) is replaced by uww

CG(r) when (m, n) is a water-
water pair and by ucw

CG(r) when (m, n) is a carbon-water pair.
Both uww

CG(r) and ucw
CG(r) are modeled by the SP potential form,

uSP(r), and the first derivative of uSP(r) with a knot value ci

can be determined from Eq. (4) as

∂uSP(r)

∂ci

= [
1 t t2 t3

] 1

6

⎡
⎢⎢⎣

1 4 1 0
−3 0 3 0

3 −6 3 0
−1 3 −3 1

⎤
⎥⎥⎦

×

⎡
⎢⎢⎣

δi,j

δi,j+1

δi,j+2

δi,j+3

⎤
⎥⎥⎦ , (A4)

where δ is the Kronecker delta function such that δi, j = 1 if
i = j, 0 otherwise. Because uSP(r) is a linear function of ci,
its second derivatives with respect to ci are zero. Since the
CG-MD ensemble depends upon the CG-MD pair potential
parameters, a short (about 500 ps long) CG-MD simulation is
performed at each Newton-Raphson iteration step to generate
corresponding CG-MD configurations and the averages in the
CG-MD ensemble are computed in the similar manner as in
Eq. (A3) by averaging over the CG-MD simulation configu-
rations instead of the AA-MD configurations.

APPENDIX B: PMF-MATCHING

In the PMF-matching technique, for the minimization of
εB using Eq. (16), we need to determine ∇λεB and HεB . ∇λεB

can be computed from Eq. (15) as

∇λεB = − 1

L

∫ L

0

1

RT
ρ

tgt
0 exp

(
− Ū (z)

RT

)

×
(

ρ
tgt
0 exp

(
− Ū (z)

RT

)
− ρ tgt(z)

)
∂Ū (z)

∂λ
dz, (B1)

and HεB is given by

Hij,εB = 1

L

∫ L

0

(
1

RT

)2

ρ
tgt
0 exp

(
− Ū (z)

RT

)

×
(

ρ
tgt
0 exp

(
− Ū (z)

RT

)
− ρ tgt(z)

)
∂Ū (z)

∂λi

∂Ū (z)

∂λj

dz

+ 1

L

∫ L

0

(
1

RT
ρ

tgt
0 exp

(
− Ū (z)

RT

))2
∂Ū (z)

∂λi

∂Ū (z)

∂λj

dz

− 1

L

∫ L

0

1

RT
ρ

tgt
0 exp

(
− Ū (z)

RT

)

×
(

ρ
tgt
0 exp

(
− Ū (z)

RT

)
− ρ tgt(z)

)
∂2Ū (z)

∂λi∂λj

dz.

(B2)

Since λ in Eq. (16) contains only the parameters of the water-
water pair potential, uww

EQT(r), only the water-water potential
profile Uww(z) contributes to the first and second derivatives
of Ū (z) in Eqs. (B1) and (B2), and they can be computed as

∂Ū (z)

∂λi

= ∂Uww(z)

∂λi

− ∂Uww(z0)

∂λi

, (B3a)

∂2Ū (z)

∂λiλj

= ∂2Uww(z)

∂λiλj

− ∂2Uww(z0)

∂λiλj

, (B3b)

where ∂Uww

∂λi
and ∂2Uww

∂λiλj
are given by

∂Uww(r)

∂λi

=
∫

ρ(r ′)
∂uww

EQT(|r − r ′|)
∂λi

dr ′, (B4a)

∂2Uww(r)

∂λiλj

=
∫

ρ(r ′)
∂2uww

EQT(|r − r ′|)
∂λiλj

dr ′. (B4b)
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The first derivatives of uww
EQT(r) with respect to a1 and a2

can be computed from Eq. (12) as

∂uww
EQT(r)

∂a1
= r − Rmin, (B5a)

∂uww
EQT(r)

∂a2
= (r − Rmin)2, (B5b)

and the first derivatives with respect to the knot values of
the B-spline part of uww

EQT(r) can be computed by Eq. (A4).
The second derivatives of uww

EQT(r) with respect to λ are zero.
For the graphene-water slit-like system, we follow the same
procedure described in the Appendix of Ref. 11 to determine
U(z), U cw(z), Uww(z), and the derivatives of U(z).
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